Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-y=0,y^{2}+x^{2}=5
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=0
Solve x-y=0 for x by isolating x on the left hand side of the equal sign.
x=y
Subtract -y from both sides of the equation.
y^{2}+y^{2}=5
Substitute y for x in the other equation, y^{2}+x^{2}=5.
2y^{2}=5
Add y^{2} to y^{2}.
2y^{2}-5=0
Subtract 5 from both sides of the equation.
y=\frac{0±\sqrt{0^{2}-4\times 2\left(-5\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 0\times 1\times 2 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 2\left(-5\right)}}{2\times 2}
Square 1\times 0\times 1\times 2.
y=\frac{0±\sqrt{-8\left(-5\right)}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
y=\frac{0±\sqrt{40}}{2\times 2}
Multiply -8 times -5.
y=\frac{0±2\sqrt{10}}{2\times 2}
Take the square root of 40.
y=\frac{0±2\sqrt{10}}{4}
Multiply 2 times 1+1\times 1^{2}.
y=\frac{\sqrt{10}}{2}
Now solve the equation y=\frac{0±2\sqrt{10}}{4} when ± is plus.
y=-\frac{\sqrt{10}}{2}
Now solve the equation y=\frac{0±2\sqrt{10}}{4} when ± is minus.
x=\frac{\sqrt{10}}{2}
There are two solutions for y: \frac{\sqrt{10}}{2} and -\frac{\sqrt{10}}{2}. Substitute \frac{\sqrt{10}}{2} for y in the equation x=y to find the corresponding solution for x that satisfies both equations.
x=-\frac{\sqrt{10}}{2}
Now substitute -\frac{\sqrt{10}}{2} for y in the equation x=y and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{\sqrt{10}}{2},y=\frac{\sqrt{10}}{2}\text{ or }x=-\frac{\sqrt{10}}{2},y=-\frac{\sqrt{10}}{2}
The system is now solved.