Solve for x, y (complex solution)
x=\frac{-\sqrt{85}i-13}{2}\approx -6.5-4.609772229i\text{, }y=\frac{-\sqrt{85}i+13}{2}\approx 6.5-4.609772229i
x=\frac{-13+\sqrt{85}i}{2}\approx -6.5+4.609772229i\text{, }y=\frac{13+\sqrt{85}i}{2}\approx 6.5+4.609772229i
Graph
Share
Copied to clipboard
y-x=13
Consider the second equation. Subtract x from both sides.
y=x+13
Subtract -x from both sides of the equation.
x^{2}+\left(x+13\right)^{2}=42
Substitute x+13 for y in the other equation, x^{2}+y^{2}=42.
x^{2}+x^{2}+26x+169=42
Square x+13.
2x^{2}+26x+169=42
Add x^{2} to x^{2}.
2x^{2}+26x+127=0
Subtract 42 from both sides of the equation.
x=\frac{-26±\sqrt{26^{2}-4\times 2\times 127}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 13\times 1\times 2 for b, and 127 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-26±\sqrt{676-4\times 2\times 127}}{2\times 2}
Square 1\times 13\times 1\times 2.
x=\frac{-26±\sqrt{676-8\times 127}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
x=\frac{-26±\sqrt{676-1016}}{2\times 2}
Multiply -8 times 127.
x=\frac{-26±\sqrt{-340}}{2\times 2}
Add 676 to -1016.
x=\frac{-26±2\sqrt{85}i}{2\times 2}
Take the square root of -340.
x=\frac{-26±2\sqrt{85}i}{4}
Multiply 2 times 1+1\times 1^{2}.
x=\frac{-26+2\sqrt{85}i}{4}
Now solve the equation x=\frac{-26±2\sqrt{85}i}{4} when ± is plus. Add -26 to 2i\sqrt{85}.
x=\frac{-13+\sqrt{85}i}{2}
Divide -26+2i\sqrt{85} by 4.
x=\frac{-2\sqrt{85}i-26}{4}
Now solve the equation x=\frac{-26±2\sqrt{85}i}{4} when ± is minus. Subtract 2i\sqrt{85} from -26.
x=\frac{-\sqrt{85}i-13}{2}
Divide -26-2i\sqrt{85} by 4.
y=\frac{-13+\sqrt{85}i}{2}+13
There are two solutions for x: \frac{-13+i\sqrt{85}}{2} and \frac{-13-i\sqrt{85}}{2}. Substitute \frac{-13+i\sqrt{85}}{2} for x in the equation y=x+13 to find the corresponding solution for y that satisfies both equations.
y=\frac{-\sqrt{85}i-13}{2}+13
Now substitute \frac{-13-i\sqrt{85}}{2} for x in the equation y=x+13 and solve to find the corresponding solution for y that satisfies both equations.
y=\frac{-13+\sqrt{85}i}{2}+13,x=\frac{-13+\sqrt{85}i}{2}\text{ or }y=\frac{-\sqrt{85}i-13}{2}+13,x=\frac{-\sqrt{85}i-13}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}