Skip to main content
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-x=13
Consider the second equation. Subtract x from both sides.
y=x+13
Subtract -x from both sides of the equation.
x^{2}+\left(x+13\right)^{2}=42
Substitute x+13 for y in the other equation, x^{2}+y^{2}=42.
x^{2}+x^{2}+26x+169=42
Square x+13.
2x^{2}+26x+169=42
Add x^{2} to x^{2}.
2x^{2}+26x+127=0
Subtract 42 from both sides of the equation.
x=\frac{-26±\sqrt{26^{2}-4\times 2\times 127}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 13\times 1\times 2 for b, and 127 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-26±\sqrt{676-4\times 2\times 127}}{2\times 2}
Square 1\times 13\times 1\times 2.
x=\frac{-26±\sqrt{676-8\times 127}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
x=\frac{-26±\sqrt{676-1016}}{2\times 2}
Multiply -8 times 127.
x=\frac{-26±\sqrt{-340}}{2\times 2}
Add 676 to -1016.
x=\frac{-26±2\sqrt{85}i}{2\times 2}
Take the square root of -340.
x=\frac{-26±2\sqrt{85}i}{4}
Multiply 2 times 1+1\times 1^{2}.
x=\frac{-26+2\sqrt{85}i}{4}
Now solve the equation x=\frac{-26±2\sqrt{85}i}{4} when ± is plus. Add -26 to 2i\sqrt{85}.
x=\frac{-13+\sqrt{85}i}{2}
Divide -26+2i\sqrt{85} by 4.
x=\frac{-2\sqrt{85}i-26}{4}
Now solve the equation x=\frac{-26±2\sqrt{85}i}{4} when ± is minus. Subtract 2i\sqrt{85} from -26.
x=\frac{-\sqrt{85}i-13}{2}
Divide -26-2i\sqrt{85} by 4.
y=\frac{-13+\sqrt{85}i}{2}+13
There are two solutions for x: \frac{-13+i\sqrt{85}}{2} and \frac{-13-i\sqrt{85}}{2}. Substitute \frac{-13+i\sqrt{85}}{2} for x in the equation y=x+13 to find the corresponding solution for y that satisfies both equations.
y=\frac{-\sqrt{85}i-13}{2}+13
Now substitute \frac{-13-i\sqrt{85}}{2} for x in the equation y=x+13 and solve to find the corresponding solution for y that satisfies both equations.
y=\frac{-13+\sqrt{85}i}{2}+13,x=\frac{-13+\sqrt{85}i}{2}\text{ or }y=\frac{-\sqrt{85}i-13}{2}+13,x=\frac{-\sqrt{85}i-13}{2}
The system is now solved.