Solve for x, y
x=\frac{73}{13}\approx 5.615384615\text{, }y=-\frac{40}{13}\approx -3.076923077
x=-5\text{, }y=4
Graph
Share
Copied to clipboard
2x+3y=2,y^{2}+x^{2}=41
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+3y=2
Solve 2x+3y=2 for x by isolating x on the left hand side of the equal sign.
2x=-3y+2
Subtract 3y from both sides of the equation.
x=-\frac{3}{2}y+1
Divide both sides by 2.
y^{2}+\left(-\frac{3}{2}y+1\right)^{2}=41
Substitute -\frac{3}{2}y+1 for x in the other equation, y^{2}+x^{2}=41.
y^{2}+\frac{9}{4}y^{2}-3y+1=41
Square -\frac{3}{2}y+1.
\frac{13}{4}y^{2}-3y+1=41
Add y^{2} to \frac{9}{4}y^{2}.
\frac{13}{4}y^{2}-3y-40=0
Subtract 41 from both sides of the equation.
y=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times \frac{13}{4}\left(-40\right)}}{2\times \frac{13}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\frac{3}{2}\right)^{2} for a, 1\times 1\left(-\frac{3}{2}\right)\times 2 for b, and -40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-3\right)±\sqrt{9-4\times \frac{13}{4}\left(-40\right)}}{2\times \frac{13}{4}}
Square 1\times 1\left(-\frac{3}{2}\right)\times 2.
y=\frac{-\left(-3\right)±\sqrt{9-13\left(-40\right)}}{2\times \frac{13}{4}}
Multiply -4 times 1+1\left(-\frac{3}{2}\right)^{2}.
y=\frac{-\left(-3\right)±\sqrt{9+520}}{2\times \frac{13}{4}}
Multiply -13 times -40.
y=\frac{-\left(-3\right)±\sqrt{529}}{2\times \frac{13}{4}}
Add 9 to 520.
y=\frac{-\left(-3\right)±23}{2\times \frac{13}{4}}
Take the square root of 529.
y=\frac{3±23}{2\times \frac{13}{4}}
The opposite of 1\times 1\left(-\frac{3}{2}\right)\times 2 is 3.
y=\frac{3±23}{\frac{13}{2}}
Multiply 2 times 1+1\left(-\frac{3}{2}\right)^{2}.
y=\frac{26}{\frac{13}{2}}
Now solve the equation y=\frac{3±23}{\frac{13}{2}} when ± is plus. Add 3 to 23.
y=4
Divide 26 by \frac{13}{2} by multiplying 26 by the reciprocal of \frac{13}{2}.
y=-\frac{20}{\frac{13}{2}}
Now solve the equation y=\frac{3±23}{\frac{13}{2}} when ± is minus. Subtract 23 from 3.
y=-\frac{40}{13}
Divide -20 by \frac{13}{2} by multiplying -20 by the reciprocal of \frac{13}{2}.
x=-\frac{3}{2}\times 4+1
There are two solutions for y: 4 and -\frac{40}{13}. Substitute 4 for y in the equation x=-\frac{3}{2}y+1 to find the corresponding solution for x that satisfies both equations.
x=-6+1
Multiply -\frac{3}{2} times 4.
x=-5
Add -\frac{3}{2}\times 4 to 1.
x=-\frac{3}{2}\left(-\frac{40}{13}\right)+1
Now substitute -\frac{40}{13} for y in the equation x=-\frac{3}{2}y+1 and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{60}{13}+1
Multiply -\frac{3}{2} times -\frac{40}{13} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{73}{13}
Add -\frac{40}{13}\left(-\frac{3}{2}\right) to 1.
x=-5,y=4\text{ or }x=\frac{73}{13},y=-\frac{40}{13}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}