Solve for x, y
x=\frac{1-2\sqrt{19}}{5}\approx -1.543559577\text{, }y=\frac{-\sqrt{19}-2}{5}\approx -1.271779789
x=\frac{2\sqrt{19}+1}{5}\approx 1.943559577\text{, }y=\frac{\sqrt{19}-2}{5}\approx 0.471779789
Graph
Share
Copied to clipboard
x-2y=1,y^{2}+x^{2}=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-2y=1
Solve x-2y=1 for x by isolating x on the left hand side of the equal sign.
x=2y+1
Subtract -2y from both sides of the equation.
y^{2}+\left(2y+1\right)^{2}=4
Substitute 2y+1 for x in the other equation, y^{2}+x^{2}=4.
y^{2}+4y^{2}+4y+1=4
Square 2y+1.
5y^{2}+4y+1=4
Add y^{2} to 4y^{2}.
5y^{2}+4y-3=0
Subtract 4 from both sides of the equation.
y=\frac{-4±\sqrt{4^{2}-4\times 5\left(-3\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 2^{2} for a, 1\times 1\times 2\times 2 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-4±\sqrt{16-4\times 5\left(-3\right)}}{2\times 5}
Square 1\times 1\times 2\times 2.
y=\frac{-4±\sqrt{16-20\left(-3\right)}}{2\times 5}
Multiply -4 times 1+1\times 2^{2}.
y=\frac{-4±\sqrt{16+60}}{2\times 5}
Multiply -20 times -3.
y=\frac{-4±\sqrt{76}}{2\times 5}
Add 16 to 60.
y=\frac{-4±2\sqrt{19}}{2\times 5}
Take the square root of 76.
y=\frac{-4±2\sqrt{19}}{10}
Multiply 2 times 1+1\times 2^{2}.
y=\frac{2\sqrt{19}-4}{10}
Now solve the equation y=\frac{-4±2\sqrt{19}}{10} when ± is plus. Add -4 to 2\sqrt{19}.
y=\frac{\sqrt{19}-2}{5}
Divide -4+2\sqrt{19} by 10.
y=\frac{-2\sqrt{19}-4}{10}
Now solve the equation y=\frac{-4±2\sqrt{19}}{10} when ± is minus. Subtract 2\sqrt{19} from -4.
y=\frac{-\sqrt{19}-2}{5}
Divide -4-2\sqrt{19} by 10.
x=2\times \frac{\sqrt{19}-2}{5}+1
Both solutions for y are the same: \frac{-2+\sqrt{19}}{5}. Substitute \frac{-2+\sqrt{19}}{5} for y in the equation x=2y+1 and solve to find the corresponding solution for x that satisfies both equations.
x=2\times \frac{-\sqrt{19}-2}{5}+1
Now substitute \frac{-2-\sqrt{19}}{5} for y in the equation x=2y+1 and solve to find the corresponding solution for x that satisfies both equations.
x=2\times \frac{\sqrt{19}-2}{5}+1,y=\frac{\sqrt{19}-2}{5}\text{ or }x=2\times \frac{-\sqrt{19}-2}{5}+1,y=\frac{-\sqrt{19}-2}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}