Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-2y=1,y^{2}+x^{2}=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-2y=1
Solve x-2y=1 for x by isolating x on the left hand side of the equal sign.
x=2y+1
Subtract -2y from both sides of the equation.
y^{2}+\left(2y+1\right)^{2}=4
Substitute 2y+1 for x in the other equation, y^{2}+x^{2}=4.
y^{2}+4y^{2}+4y+1=4
Square 2y+1.
5y^{2}+4y+1=4
Add y^{2} to 4y^{2}.
5y^{2}+4y-3=0
Subtract 4 from both sides of the equation.
y=\frac{-4±\sqrt{4^{2}-4\times 5\left(-3\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 2^{2} for a, 1\times 1\times 2\times 2 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-4±\sqrt{16-4\times 5\left(-3\right)}}{2\times 5}
Square 1\times 1\times 2\times 2.
y=\frac{-4±\sqrt{16-20\left(-3\right)}}{2\times 5}
Multiply -4 times 1+1\times 2^{2}.
y=\frac{-4±\sqrt{16+60}}{2\times 5}
Multiply -20 times -3.
y=\frac{-4±\sqrt{76}}{2\times 5}
Add 16 to 60.
y=\frac{-4±2\sqrt{19}}{2\times 5}
Take the square root of 76.
y=\frac{-4±2\sqrt{19}}{10}
Multiply 2 times 1+1\times 2^{2}.
y=\frac{2\sqrt{19}-4}{10}
Now solve the equation y=\frac{-4±2\sqrt{19}}{10} when ± is plus. Add -4 to 2\sqrt{19}.
y=\frac{\sqrt{19}-2}{5}
Divide -4+2\sqrt{19} by 10.
y=\frac{-2\sqrt{19}-4}{10}
Now solve the equation y=\frac{-4±2\sqrt{19}}{10} when ± is minus. Subtract 2\sqrt{19} from -4.
y=\frac{-\sqrt{19}-2}{5}
Divide -4-2\sqrt{19} by 10.
x=2\times \frac{\sqrt{19}-2}{5}+1
Both solutions for y are the same: \frac{-2+\sqrt{19}}{5}. Substitute \frac{-2+\sqrt{19}}{5} for y in the equation x=2y+1 and solve to find the corresponding solution for x that satisfies both equations.
x=2\times \frac{-\sqrt{19}-2}{5}+1
Now substitute \frac{-2-\sqrt{19}}{5} for y in the equation x=2y+1 and solve to find the corresponding solution for x that satisfies both equations.
x=2\times \frac{\sqrt{19}-2}{5}+1,y=\frac{\sqrt{19}-2}{5}\text{ or }x=2\times \frac{-\sqrt{19}-2}{5}+1,y=\frac{-\sqrt{19}-2}{5}
The system is now solved.