Solve for x, y
x=\frac{8}{5}=1.6\text{, }y=\frac{6}{5}=1.2
x=2\text{, }y=0
Graph
Share
Copied to clipboard
3x+y=6,y^{2}+x^{2}=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+y=6
Solve 3x+y=6 for x by isolating x on the left hand side of the equal sign.
3x=-y+6
Subtract y from both sides of the equation.
x=-\frac{1}{3}y+2
Divide both sides by 3.
y^{2}+\left(-\frac{1}{3}y+2\right)^{2}=4
Substitute -\frac{1}{3}y+2 for x in the other equation, y^{2}+x^{2}=4.
y^{2}+\frac{1}{9}y^{2}-\frac{4}{3}y+4=4
Square -\frac{1}{3}y+2.
\frac{10}{9}y^{2}-\frac{4}{3}y+4=4
Add y^{2} to \frac{1}{9}y^{2}.
\frac{10}{9}y^{2}-\frac{4}{3}y=0
Subtract 4 from both sides of the equation.
y=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}}}{2\times \frac{10}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\frac{1}{3}\right)^{2} for a, 1\times 2\left(-\frac{1}{3}\right)\times 2 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{4}{3}\right)±\frac{4}{3}}{2\times \frac{10}{9}}
Take the square root of \left(-\frac{4}{3}\right)^{2}.
y=\frac{\frac{4}{3}±\frac{4}{3}}{2\times \frac{10}{9}}
The opposite of 1\times 2\left(-\frac{1}{3}\right)\times 2 is \frac{4}{3}.
y=\frac{\frac{4}{3}±\frac{4}{3}}{\frac{20}{9}}
Multiply 2 times 1+1\left(-\frac{1}{3}\right)^{2}.
y=\frac{\frac{8}{3}}{\frac{20}{9}}
Now solve the equation y=\frac{\frac{4}{3}±\frac{4}{3}}{\frac{20}{9}} when ± is plus. Add \frac{4}{3} to \frac{4}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{6}{5}
Divide \frac{8}{3} by \frac{20}{9} by multiplying \frac{8}{3} by the reciprocal of \frac{20}{9}.
y=\frac{0}{\frac{20}{9}}
Now solve the equation y=\frac{\frac{4}{3}±\frac{4}{3}}{\frac{20}{9}} when ± is minus. Subtract \frac{4}{3} from \frac{4}{3} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
y=0
Divide 0 by \frac{20}{9} by multiplying 0 by the reciprocal of \frac{20}{9}.
x=-\frac{1}{3}\times \frac{6}{5}+2
There are two solutions for y: \frac{6}{5} and 0. Substitute \frac{6}{5} for y in the equation x=-\frac{1}{3}y+2 to find the corresponding solution for x that satisfies both equations.
x=-\frac{2}{5}+2
Multiply -\frac{1}{3} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{8}{5}
Add -\frac{1}{3}\times \frac{6}{5} to 2.
x=2
Now substitute 0 for y in the equation x=-\frac{1}{3}y+2 and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{8}{5},y=\frac{6}{5}\text{ or }x=2,y=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}