Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x+y=6,y^{2}+x^{2}=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+y=6
Solve 3x+y=6 for x by isolating x on the left hand side of the equal sign.
3x=-y+6
Subtract y from both sides of the equation.
x=-\frac{1}{3}y+2
Divide both sides by 3.
y^{2}+\left(-\frac{1}{3}y+2\right)^{2}=4
Substitute -\frac{1}{3}y+2 for x in the other equation, y^{2}+x^{2}=4.
y^{2}+\frac{1}{9}y^{2}-\frac{4}{3}y+4=4
Square -\frac{1}{3}y+2.
\frac{10}{9}y^{2}-\frac{4}{3}y+4=4
Add y^{2} to \frac{1}{9}y^{2}.
\frac{10}{9}y^{2}-\frac{4}{3}y=0
Subtract 4 from both sides of the equation.
y=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}}}{2\times \frac{10}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\frac{1}{3}\right)^{2} for a, 1\times 2\left(-\frac{1}{3}\right)\times 2 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{4}{3}\right)±\frac{4}{3}}{2\times \frac{10}{9}}
Take the square root of \left(-\frac{4}{3}\right)^{2}.
y=\frac{\frac{4}{3}±\frac{4}{3}}{2\times \frac{10}{9}}
The opposite of 1\times 2\left(-\frac{1}{3}\right)\times 2 is \frac{4}{3}.
y=\frac{\frac{4}{3}±\frac{4}{3}}{\frac{20}{9}}
Multiply 2 times 1+1\left(-\frac{1}{3}\right)^{2}.
y=\frac{\frac{8}{3}}{\frac{20}{9}}
Now solve the equation y=\frac{\frac{4}{3}±\frac{4}{3}}{\frac{20}{9}} when ± is plus. Add \frac{4}{3} to \frac{4}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{6}{5}
Divide \frac{8}{3} by \frac{20}{9} by multiplying \frac{8}{3} by the reciprocal of \frac{20}{9}.
y=\frac{0}{\frac{20}{9}}
Now solve the equation y=\frac{\frac{4}{3}±\frac{4}{3}}{\frac{20}{9}} when ± is minus. Subtract \frac{4}{3} from \frac{4}{3} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
y=0
Divide 0 by \frac{20}{9} by multiplying 0 by the reciprocal of \frac{20}{9}.
x=-\frac{1}{3}\times \frac{6}{5}+2
There are two solutions for y: \frac{6}{5} and 0. Substitute \frac{6}{5} for y in the equation x=-\frac{1}{3}y+2 to find the corresponding solution for x that satisfies both equations.
x=-\frac{2}{5}+2
Multiply -\frac{1}{3} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{8}{5}
Add -\frac{1}{3}\times \frac{6}{5} to 2.
x=2
Now substitute 0 for y in the equation x=-\frac{1}{3}y+2 and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{8}{5},y=\frac{6}{5}\text{ or }x=2,y=0
The system is now solved.