Skip to main content
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=9
Solve x+y=9 for x by isolating x on the left hand side of the equal sign.
x=-y+9
Subtract y from both sides of the equation.
y^{2}+\left(-y+9\right)^{2}=34
Substitute -y+9 for x in the other equation, y^{2}+x^{2}=34.
y^{2}+y^{2}-18y+81=34
Square -y+9.
2y^{2}-18y+81=34
Add y^{2} to y^{2}.
2y^{2}-18y+47=0
Subtract 34 from both sides of the equation.
y=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 2\times 47}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 9\left(-1\right)\times 2 for b, and 47 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-18\right)±\sqrt{324-4\times 2\times 47}}{2\times 2}
Square 1\times 9\left(-1\right)\times 2.
y=\frac{-\left(-18\right)±\sqrt{324-8\times 47}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-18\right)±\sqrt{324-376}}{2\times 2}
Multiply -8 times 47.
y=\frac{-\left(-18\right)±\sqrt{-52}}{2\times 2}
Add 324 to -376.
y=\frac{-\left(-18\right)±2\sqrt{13}i}{2\times 2}
Take the square root of -52.
y=\frac{18±2\sqrt{13}i}{2\times 2}
The opposite of 1\times 9\left(-1\right)\times 2 is 18.
y=\frac{18±2\sqrt{13}i}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{18+2\sqrt{13}i}{4}
Now solve the equation y=\frac{18±2\sqrt{13}i}{4} when ± is plus. Add 18 to 2i\sqrt{13}.
y=\frac{9+\sqrt{13}i}{2}
Divide 18+2i\sqrt{13} by 4.
y=\frac{-2\sqrt{13}i+18}{4}
Now solve the equation y=\frac{18±2\sqrt{13}i}{4} when ± is minus. Subtract 2i\sqrt{13} from 18.
y=\frac{-\sqrt{13}i+9}{2}
Divide 18-2i\sqrt{13} by 4.
x=-\frac{9+\sqrt{13}i}{2}+9
There are two solutions for y: \frac{9+i\sqrt{13}}{2} and \frac{9-i\sqrt{13}}{2}. Substitute \frac{9+i\sqrt{13}}{2} for y in the equation x=-y+9 to find the corresponding solution for x that satisfies both equations.
x=-\frac{-\sqrt{13}i+9}{2}+9
Now substitute \frac{9-i\sqrt{13}}{2} for y in the equation x=-y+9 and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{9+\sqrt{13}i}{2}+9,y=\frac{9+\sqrt{13}i}{2}\text{ or }x=-\frac{-\sqrt{13}i+9}{2}+9,y=\frac{-\sqrt{13}i+9}{2}
The system is now solved.