Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x=y\times 21
Consider the second equation. Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 9y, the least common multiple of y,9.
9x-y\times 21=0
Subtract y\times 21 from both sides.
9x-21y=0
Multiply -1 and 21 to get -21.
9x-21y=0,y^{2}+x^{2}=30
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
9x-21y=0
Solve 9x-21y=0 for x by isolating x on the left hand side of the equal sign.
9x=21y
Subtract -21y from both sides of the equation.
x=\frac{7}{3}y
Divide both sides by 9.
y^{2}+\left(\frac{7}{3}y\right)^{2}=30
Substitute \frac{7}{3}y for x in the other equation, y^{2}+x^{2}=30.
y^{2}+\frac{49}{9}y^{2}=30
Square \frac{7}{3}y.
\frac{58}{9}y^{2}=30
Add y^{2} to \frac{49}{9}y^{2}.
\frac{58}{9}y^{2}-30=0
Subtract 30 from both sides of the equation.
y=\frac{0±\sqrt{0^{2}-4\times \frac{58}{9}\left(-30\right)}}{2\times \frac{58}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times \left(\frac{7}{3}\right)^{2} for a, 1\times 0\times 2\times \frac{7}{3} for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times \frac{58}{9}\left(-30\right)}}{2\times \frac{58}{9}}
Square 1\times 0\times 2\times \frac{7}{3}.
y=\frac{0±\sqrt{-\frac{232}{9}\left(-30\right)}}{2\times \frac{58}{9}}
Multiply -4 times 1+1\times \left(\frac{7}{3}\right)^{2}.
y=\frac{0±\sqrt{\frac{2320}{3}}}{2\times \frac{58}{9}}
Multiply -\frac{232}{9} times -30.
y=\frac{0±\frac{4\sqrt{435}}{3}}{2\times \frac{58}{9}}
Take the square root of \frac{2320}{3}.
y=\frac{0±\frac{4\sqrt{435}}{3}}{\frac{116}{9}}
Multiply 2 times 1+1\times \left(\frac{7}{3}\right)^{2}.
y=\frac{3\sqrt{435}}{29}
Now solve the equation y=\frac{0±\frac{4\sqrt{435}}{3}}{\frac{116}{9}} when ± is plus.
y=-\frac{3\sqrt{435}}{29}
Now solve the equation y=\frac{0±\frac{4\sqrt{435}}{3}}{\frac{116}{9}} when ± is minus.
x=\frac{7}{3}\times \frac{3\sqrt{435}}{29}
There are two solutions for y: \frac{3\sqrt{435}}{29} and -\frac{3\sqrt{435}}{29}. Substitute \frac{3\sqrt{435}}{29} for y in the equation x=\frac{7}{3}y to find the corresponding solution for x that satisfies both equations.
x=\frac{7\times \frac{3\sqrt{435}}{29}}{3}
Multiply \frac{7}{3} times \frac{3\sqrt{435}}{29}.
x=\frac{7}{3}\left(-\frac{3\sqrt{435}}{29}\right)
Now substitute -\frac{3\sqrt{435}}{29} for y in the equation x=\frac{7}{3}y and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{7\left(-\frac{3\sqrt{435}}{29}\right)}{3}
Multiply \frac{7}{3} times -\frac{3\sqrt{435}}{29}.
x=\frac{7\times \frac{3\sqrt{435}}{29}}{3},y=\frac{3\sqrt{435}}{29}\text{ or }x=\frac{7\left(-\frac{3\sqrt{435}}{29}\right)}{3},y=-\frac{3\sqrt{435}}{29}
The system is now solved.