Solve for x, y
x=-\frac{7\sqrt{435}}{29}\approx -5.034364666\text{, }y=-\frac{3\sqrt{435}}{29}\approx -2.157584857
x=\frac{7\sqrt{435}}{29}\approx 5.034364666\text{, }y=\frac{3\sqrt{435}}{29}\approx 2.157584857
Graph
Share
Copied to clipboard
9x=y\times 21
Consider the second equation. Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 9y, the least common multiple of y,9.
9x-y\times 21=0
Subtract y\times 21 from both sides.
9x-21y=0
Multiply -1 and 21 to get -21.
9x-21y=0,y^{2}+x^{2}=30
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
9x-21y=0
Solve 9x-21y=0 for x by isolating x on the left hand side of the equal sign.
9x=21y
Subtract -21y from both sides of the equation.
x=\frac{7}{3}y
Divide both sides by 9.
y^{2}+\left(\frac{7}{3}y\right)^{2}=30
Substitute \frac{7}{3}y for x in the other equation, y^{2}+x^{2}=30.
y^{2}+\frac{49}{9}y^{2}=30
Square \frac{7}{3}y.
\frac{58}{9}y^{2}=30
Add y^{2} to \frac{49}{9}y^{2}.
\frac{58}{9}y^{2}-30=0
Subtract 30 from both sides of the equation.
y=\frac{0±\sqrt{0^{2}-4\times \frac{58}{9}\left(-30\right)}}{2\times \frac{58}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times \left(\frac{7}{3}\right)^{2} for a, 1\times 0\times 2\times \frac{7}{3} for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times \frac{58}{9}\left(-30\right)}}{2\times \frac{58}{9}}
Square 1\times 0\times 2\times \frac{7}{3}.
y=\frac{0±\sqrt{-\frac{232}{9}\left(-30\right)}}{2\times \frac{58}{9}}
Multiply -4 times 1+1\times \left(\frac{7}{3}\right)^{2}.
y=\frac{0±\sqrt{\frac{2320}{3}}}{2\times \frac{58}{9}}
Multiply -\frac{232}{9} times -30.
y=\frac{0±\frac{4\sqrt{435}}{3}}{2\times \frac{58}{9}}
Take the square root of \frac{2320}{3}.
y=\frac{0±\frac{4\sqrt{435}}{3}}{\frac{116}{9}}
Multiply 2 times 1+1\times \left(\frac{7}{3}\right)^{2}.
y=\frac{3\sqrt{435}}{29}
Now solve the equation y=\frac{0±\frac{4\sqrt{435}}{3}}{\frac{116}{9}} when ± is plus.
y=-\frac{3\sqrt{435}}{29}
Now solve the equation y=\frac{0±\frac{4\sqrt{435}}{3}}{\frac{116}{9}} when ± is minus.
x=\frac{7}{3}\times \frac{3\sqrt{435}}{29}
There are two solutions for y: \frac{3\sqrt{435}}{29} and -\frac{3\sqrt{435}}{29}. Substitute \frac{3\sqrt{435}}{29} for y in the equation x=\frac{7}{3}y to find the corresponding solution for x that satisfies both equations.
x=\frac{7\times \frac{3\sqrt{435}}{29}}{3}
Multiply \frac{7}{3} times \frac{3\sqrt{435}}{29}.
x=\frac{7}{3}\left(-\frac{3\sqrt{435}}{29}\right)
Now substitute -\frac{3\sqrt{435}}{29} for y in the equation x=\frac{7}{3}y and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{7\left(-\frac{3\sqrt{435}}{29}\right)}{3}
Multiply \frac{7}{3} times -\frac{3\sqrt{435}}{29}.
x=\frac{7\times \frac{3\sqrt{435}}{29}}{3},y=\frac{3\sqrt{435}}{29}\text{ or }x=\frac{7\left(-\frac{3\sqrt{435}}{29}\right)}{3},y=-\frac{3\sqrt{435}}{29}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}