Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-2x=-2
Consider the second equation. Subtract 2x from both sides.
y-2x=-2,x^{2}+y^{2}=25
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-2x=-2
Solve y-2x=-2 for y by isolating y on the left hand side of the equal sign.
y=2x-2
Subtract -2x from both sides of the equation.
x^{2}+\left(2x-2\right)^{2}=25
Substitute 2x-2 for y in the other equation, x^{2}+y^{2}=25.
x^{2}+4x^{2}-8x+4=25
Square 2x-2.
5x^{2}-8x+4=25
Add x^{2} to 4x^{2}.
5x^{2}-8x-21=0
Subtract 25 from both sides of the equation.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 5\left(-21\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 2^{2} for a, 1\left(-2\right)\times 2\times 2 for b, and -21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 5\left(-21\right)}}{2\times 5}
Square 1\left(-2\right)\times 2\times 2.
x=\frac{-\left(-8\right)±\sqrt{64-20\left(-21\right)}}{2\times 5}
Multiply -4 times 1+1\times 2^{2}.
x=\frac{-\left(-8\right)±\sqrt{64+420}}{2\times 5}
Multiply -20 times -21.
x=\frac{-\left(-8\right)±\sqrt{484}}{2\times 5}
Add 64 to 420.
x=\frac{-\left(-8\right)±22}{2\times 5}
Take the square root of 484.
x=\frac{8±22}{2\times 5}
The opposite of 1\left(-2\right)\times 2\times 2 is 8.
x=\frac{8±22}{10}
Multiply 2 times 1+1\times 2^{2}.
x=\frac{30}{10}
Now solve the equation x=\frac{8±22}{10} when ± is plus. Add 8 to 22.
x=3
Divide 30 by 10.
x=-\frac{14}{10}
Now solve the equation x=\frac{8±22}{10} when ± is minus. Subtract 22 from 8.
x=-\frac{7}{5}
Reduce the fraction \frac{-14}{10} to lowest terms by extracting and canceling out 2.
y=2\times 3-2
There are two solutions for x: 3 and -\frac{7}{5}. Substitute 3 for x in the equation y=2x-2 to find the corresponding solution for y that satisfies both equations.
y=6-2
Multiply 2 times 3.
y=4
Add 2\times 3 to -2.
y=2\left(-\frac{7}{5}\right)-2
Now substitute -\frac{7}{5} for x in the equation y=2x-2 and solve to find the corresponding solution for y that satisfies both equations.
y=-\frac{14}{5}-2
Multiply 2 times -\frac{7}{5}.
y=-\frac{24}{5}
Add -\frac{7}{5}\times 2 to -2.
y=4,x=3\text{ or }y=-\frac{24}{5},x=-\frac{7}{5}
The system is now solved.