Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-y=\frac{1}{2},y^{2}+x^{2}=2
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=\frac{1}{2}
Solve x-y=\frac{1}{2} for x by isolating x on the left hand side of the equal sign.
x=y+\frac{1}{2}
Subtract -y from both sides of the equation.
y^{2}+\left(y+\frac{1}{2}\right)^{2}=2
Substitute y+\frac{1}{2} for x in the other equation, y^{2}+x^{2}=2.
y^{2}+y^{2}+y+\frac{1}{4}=2
Square y+\frac{1}{2}.
2y^{2}+y+\frac{1}{4}=2
Add y^{2} to y^{2}.
2y^{2}+y-\frac{7}{4}=0
Subtract 2 from both sides of the equation.
y=\frac{-1±\sqrt{1^{2}-4\times 2\left(-\frac{7}{4}\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times \frac{1}{2}\times 1\times 2 for b, and -\frac{7}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-1±\sqrt{1-4\times 2\left(-\frac{7}{4}\right)}}{2\times 2}
Square 1\times \frac{1}{2}\times 1\times 2.
y=\frac{-1±\sqrt{1-8\left(-\frac{7}{4}\right)}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
y=\frac{-1±\sqrt{1+14}}{2\times 2}
Multiply -8 times -\frac{7}{4}.
y=\frac{-1±\sqrt{15}}{2\times 2}
Add 1 to 14.
y=\frac{-1±\sqrt{15}}{4}
Multiply 2 times 1+1\times 1^{2}.
y=\frac{\sqrt{15}-1}{4}
Now solve the equation y=\frac{-1±\sqrt{15}}{4} when ± is plus. Add -1 to \sqrt{15}.
y=\frac{-\sqrt{15}-1}{4}
Now solve the equation y=\frac{-1±\sqrt{15}}{4} when ± is minus. Subtract \sqrt{15} from -1.
x=\frac{\sqrt{15}-1}{4}+\frac{1}{2}
Both solutions for y are the same: \frac{-1+\sqrt{15}}{4}. Substitute \frac{-1+\sqrt{15}}{4} for y in the equation x=y+\frac{1}{2} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{-\sqrt{15}-1}{4}+\frac{1}{2}
Now substitute \frac{-1-\sqrt{15}}{4} for y in the equation x=y+\frac{1}{2} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{\sqrt{15}-1}{4}+\frac{1}{2},y=\frac{\sqrt{15}-1}{4}\text{ or }x=\frac{-\sqrt{15}-1}{4}+\frac{1}{2},y=\frac{-\sqrt{15}-1}{4}
The system is now solved.