Solve for x, y
x=-\frac{6\sqrt{74}}{37}\approx -1.394971665\text{, }y=-\frac{\sqrt{74}}{37}\approx -0.232495277
x=\frac{6\sqrt{74}}{37}\approx 1.394971665\text{, }y=\frac{\sqrt{74}}{37}\approx 0.232495277
Graph
Share
Copied to clipboard
x-6y=0
Consider the second equation. Subtract 6y from both sides.
x-6y=0,y^{2}+x^{2}=2
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-6y=0
Solve x-6y=0 for x by isolating x on the left hand side of the equal sign.
x=6y
Subtract -6y from both sides of the equation.
y^{2}+\left(6y\right)^{2}=2
Substitute 6y for x in the other equation, y^{2}+x^{2}=2.
y^{2}+36y^{2}=2
Square 6y.
37y^{2}=2
Add y^{2} to 36y^{2}.
37y^{2}-2=0
Subtract 2 from both sides of the equation.
y=\frac{0±\sqrt{0^{2}-4\times 37\left(-2\right)}}{2\times 37}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 6^{2} for a, 1\times 0\times 2\times 6 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 37\left(-2\right)}}{2\times 37}
Square 1\times 0\times 2\times 6.
y=\frac{0±\sqrt{-148\left(-2\right)}}{2\times 37}
Multiply -4 times 1+1\times 6^{2}.
y=\frac{0±\sqrt{296}}{2\times 37}
Multiply -148 times -2.
y=\frac{0±2\sqrt{74}}{2\times 37}
Take the square root of 296.
y=\frac{0±2\sqrt{74}}{74}
Multiply 2 times 1+1\times 6^{2}.
y=\frac{\sqrt{74}}{37}
Now solve the equation y=\frac{0±2\sqrt{74}}{74} when ± is plus.
y=-\frac{\sqrt{74}}{37}
Now solve the equation y=\frac{0±2\sqrt{74}}{74} when ± is minus.
x=6\times \frac{\sqrt{74}}{37}
There are two solutions for y: \frac{\sqrt{74}}{37} and -\frac{\sqrt{74}}{37}. Substitute \frac{\sqrt{74}}{37} for y in the equation x=6y to find the corresponding solution for x that satisfies both equations.
x=6\left(-\frac{\sqrt{74}}{37}\right)
Now substitute -\frac{\sqrt{74}}{37} for y in the equation x=6y and solve to find the corresponding solution for x that satisfies both equations.
x=6\times \frac{\sqrt{74}}{37},y=\frac{\sqrt{74}}{37}\text{ or }x=6\left(-\frac{\sqrt{74}}{37}\right),y=-\frac{\sqrt{74}}{37}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}