Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-6y=0
Consider the second equation. Subtract 6y from both sides.
x-6y=0,y^{2}+x^{2}=2
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-6y=0
Solve x-6y=0 for x by isolating x on the left hand side of the equal sign.
x=6y
Subtract -6y from both sides of the equation.
y^{2}+\left(6y\right)^{2}=2
Substitute 6y for x in the other equation, y^{2}+x^{2}=2.
y^{2}+36y^{2}=2
Square 6y.
37y^{2}=2
Add y^{2} to 36y^{2}.
37y^{2}-2=0
Subtract 2 from both sides of the equation.
y=\frac{0±\sqrt{0^{2}-4\times 37\left(-2\right)}}{2\times 37}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 6^{2} for a, 1\times 0\times 2\times 6 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 37\left(-2\right)}}{2\times 37}
Square 1\times 0\times 2\times 6.
y=\frac{0±\sqrt{-148\left(-2\right)}}{2\times 37}
Multiply -4 times 1+1\times 6^{2}.
y=\frac{0±\sqrt{296}}{2\times 37}
Multiply -148 times -2.
y=\frac{0±2\sqrt{74}}{2\times 37}
Take the square root of 296.
y=\frac{0±2\sqrt{74}}{74}
Multiply 2 times 1+1\times 6^{2}.
y=\frac{\sqrt{74}}{37}
Now solve the equation y=\frac{0±2\sqrt{74}}{74} when ± is plus.
y=-\frac{\sqrt{74}}{37}
Now solve the equation y=\frac{0±2\sqrt{74}}{74} when ± is minus.
x=6\times \frac{\sqrt{74}}{37}
There are two solutions for y: \frac{\sqrt{74}}{37} and -\frac{\sqrt{74}}{37}. Substitute \frac{\sqrt{74}}{37} for y in the equation x=6y to find the corresponding solution for x that satisfies both equations.
x=6\left(-\frac{\sqrt{74}}{37}\right)
Now substitute -\frac{\sqrt{74}}{37} for y in the equation x=6y and solve to find the corresponding solution for x that satisfies both equations.
x=6\times \frac{\sqrt{74}}{37},y=\frac{\sqrt{74}}{37}\text{ or }x=6\left(-\frac{\sqrt{74}}{37}\right),y=-\frac{\sqrt{74}}{37}
The system is now solved.