Solve for x, y
x=3
y=-3
Graph
Share
Copied to clipboard
x-y=6,y^{2}+x^{2}=18
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=6
Solve x-y=6 for x by isolating x on the left hand side of the equal sign.
x=y+6
Subtract -y from both sides of the equation.
y^{2}+\left(y+6\right)^{2}=18
Substitute y+6 for x in the other equation, y^{2}+x^{2}=18.
y^{2}+y^{2}+12y+36=18
Square y+6.
2y^{2}+12y+36=18
Add y^{2} to y^{2}.
2y^{2}+12y+18=0
Subtract 18 from both sides of the equation.
y=\frac{-12±\sqrt{12^{2}-4\times 2\times 18}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 6\times 1\times 2 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-12±\sqrt{144-4\times 2\times 18}}{2\times 2}
Square 1\times 6\times 1\times 2.
y=\frac{-12±\sqrt{144-8\times 18}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
y=\frac{-12±\sqrt{144-144}}{2\times 2}
Multiply -8 times 18.
y=\frac{-12±\sqrt{0}}{2\times 2}
Add 144 to -144.
y=-\frac{12}{2\times 2}
Take the square root of 0.
y=-\frac{12}{4}
Multiply 2 times 1+1\times 1^{2}.
y=-3
Divide -12 by 4.
x=-3+6
There are two solutions for y: -3 and -3. Substitute -3 for y in the equation x=y+6 to find the corresponding solution for x that satisfies both equations.
x=3
Add -3 to 6.
x=3,y=-3\text{ or }x=3,y=-3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}