Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=17,y^{2}+x^{2}=169
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=17
Solve x+y=17 for x by isolating x on the left hand side of the equal sign.
x=-y+17
Subtract y from both sides of the equation.
y^{2}+\left(-y+17\right)^{2}=169
Substitute -y+17 for x in the other equation, y^{2}+x^{2}=169.
y^{2}+y^{2}-34y+289=169
Square -y+17.
2y^{2}-34y+289=169
Add y^{2} to y^{2}.
2y^{2}-34y+120=0
Subtract 169 from both sides of the equation.
y=\frac{-\left(-34\right)±\sqrt{\left(-34\right)^{2}-4\times 2\times 120}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 17\left(-1\right)\times 2 for b, and 120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-34\right)±\sqrt{1156-4\times 2\times 120}}{2\times 2}
Square 1\times 17\left(-1\right)\times 2.
y=\frac{-\left(-34\right)±\sqrt{1156-8\times 120}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-34\right)±\sqrt{1156-960}}{2\times 2}
Multiply -8 times 120.
y=\frac{-\left(-34\right)±\sqrt{196}}{2\times 2}
Add 1156 to -960.
y=\frac{-\left(-34\right)±14}{2\times 2}
Take the square root of 196.
y=\frac{34±14}{2\times 2}
The opposite of 1\times 17\left(-1\right)\times 2 is 34.
y=\frac{34±14}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{48}{4}
Now solve the equation y=\frac{34±14}{4} when ± is plus. Add 34 to 14.
y=12
Divide 48 by 4.
y=\frac{20}{4}
Now solve the equation y=\frac{34±14}{4} when ± is minus. Subtract 14 from 34.
y=5
Divide 20 by 4.
x=-12+17
There are two solutions for y: 12 and 5. Substitute 12 for y in the equation x=-y+17 to find the corresponding solution for x that satisfies both equations.
x=5
Add -12 to 17.
x=-5+17
Now substitute 5 for y in the equation x=-y+17 and solve to find the corresponding solution for x that satisfies both equations.
x=12
Add -5 to 17.
x=5,y=12\text{ or }x=12,y=5
The system is now solved.