Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-4x=2
Consider the second equation. Subtract 4x from both sides.
y-4x=2,x^{2}+y^{2}=16
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-4x=2
Solve y-4x=2 for y by isolating y on the left hand side of the equal sign.
y=4x+2
Subtract -4x from both sides of the equation.
x^{2}+\left(4x+2\right)^{2}=16
Substitute 4x+2 for y in the other equation, x^{2}+y^{2}=16.
x^{2}+16x^{2}+16x+4=16
Square 4x+2.
17x^{2}+16x+4=16
Add x^{2} to 16x^{2}.
17x^{2}+16x-12=0
Subtract 16 from both sides of the equation.
x=\frac{-16±\sqrt{16^{2}-4\times 17\left(-12\right)}}{2\times 17}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 4^{2} for a, 1\times 2\times 2\times 4 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 17\left(-12\right)}}{2\times 17}
Square 1\times 2\times 2\times 4.
x=\frac{-16±\sqrt{256-68\left(-12\right)}}{2\times 17}
Multiply -4 times 1+1\times 4^{2}.
x=\frac{-16±\sqrt{256+816}}{2\times 17}
Multiply -68 times -12.
x=\frac{-16±\sqrt{1072}}{2\times 17}
Add 256 to 816.
x=\frac{-16±4\sqrt{67}}{2\times 17}
Take the square root of 1072.
x=\frac{-16±4\sqrt{67}}{34}
Multiply 2 times 1+1\times 4^{2}.
x=\frac{4\sqrt{67}-16}{34}
Now solve the equation x=\frac{-16±4\sqrt{67}}{34} when ± is plus. Add -16 to 4\sqrt{67}.
x=\frac{2\sqrt{67}-8}{17}
Divide -16+4\sqrt{67} by 34.
x=\frac{-4\sqrt{67}-16}{34}
Now solve the equation x=\frac{-16±4\sqrt{67}}{34} when ± is minus. Subtract 4\sqrt{67} from -16.
x=\frac{-2\sqrt{67}-8}{17}
Divide -16-4\sqrt{67} by 34.
y=4\times \frac{2\sqrt{67}-8}{17}+2
Both solutions for x are the same: \frac{-8+2\sqrt{67}}{17}. Substitute \frac{-8+2\sqrt{67}}{17} for x in the equation y=4x+2 and solve to find the corresponding solution for y that satisfies both equations.
y=4\times \frac{-2\sqrt{67}-8}{17}+2
Now substitute \frac{-8-2\sqrt{67}}{17} for x in the equation y=4x+2 and solve to find the corresponding solution for y that satisfies both equations.
y=4\times \frac{2\sqrt{67}-8}{17}+2,x=\frac{2\sqrt{67}-8}{17}\text{ or }y=4\times \frac{-2\sqrt{67}-8}{17}+2,x=\frac{-2\sqrt{67}-8}{17}
The system is now solved.