Skip to main content
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-y=24
Solve x-y=24 for x by isolating x on the left hand side of the equal sign.
x=y+24
Subtract -y from both sides of the equation.
y^{2}+\left(y+24\right)^{2}=16
Substitute y+24 for x in the other equation, y^{2}+x^{2}=16.
y^{2}+y^{2}+48y+576=16
Square y+24.
2y^{2}+48y+576=16
Add y^{2} to y^{2}.
2y^{2}+48y+560=0
Subtract 16 from both sides of the equation.
y=\frac{-48±\sqrt{48^{2}-4\times 2\times 560}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 24\times 1\times 2 for b, and 560 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-48±\sqrt{2304-4\times 2\times 560}}{2\times 2}
Square 1\times 24\times 1\times 2.
y=\frac{-48±\sqrt{2304-8\times 560}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
y=\frac{-48±\sqrt{2304-4480}}{2\times 2}
Multiply -8 times 560.
y=\frac{-48±\sqrt{-2176}}{2\times 2}
Add 2304 to -4480.
y=\frac{-48±8\sqrt{34}i}{2\times 2}
Take the square root of -2176.
y=\frac{-48±8\sqrt{34}i}{4}
Multiply 2 times 1+1\times 1^{2}.
y=\frac{-48+8\sqrt{34}i}{4}
Now solve the equation y=\frac{-48±8\sqrt{34}i}{4} when ± is plus. Add -48 to 8i\sqrt{34}.
y=-12+2\sqrt{34}i
Divide -48+8i\sqrt{34} by 4.
y=\frac{-8\sqrt{34}i-48}{4}
Now solve the equation y=\frac{-48±8\sqrt{34}i}{4} when ± is minus. Subtract 8i\sqrt{34} from -48.
y=-2\sqrt{34}i-12
Divide -48-8i\sqrt{34} by 4.
x=-12+2\sqrt{34}i+24
There are two solutions for y: -12+2i\sqrt{34} and -12-2i\sqrt{34}. Substitute -12+2i\sqrt{34} for y in the equation x=y+24 to find the corresponding solution for x that satisfies both equations.
x=12+2\sqrt{34}i
Add 1\left(-12+2i\sqrt{34}\right) to 24.
x=-2\sqrt{34}i-12+24
Now substitute -12-2i\sqrt{34} for y in the equation x=y+24 and solve to find the corresponding solution for x that satisfies both equations.
x=-2\sqrt{34}i+12
Add 1\left(-12-2i\sqrt{34}\right) to 24.
x=12+2\sqrt{34}i,y=-12+2\sqrt{34}i\text{ or }x=-2\sqrt{34}i+12,y=-2\sqrt{34}i-12
The system is now solved.