Solve for x, y
x=2\text{, }y=3
x=-3\text{, }y=-2
Graph
Share
Copied to clipboard
y-x=1,x^{2}+y^{2}=13
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-x=1
Solve y-x=1 for y by isolating y on the left hand side of the equal sign.
y=x+1
Subtract -x from both sides of the equation.
x^{2}+\left(x+1\right)^{2}=13
Substitute x+1 for y in the other equation, x^{2}+y^{2}=13.
x^{2}+x^{2}+2x+1=13
Square x+1.
2x^{2}+2x+1=13
Add x^{2} to x^{2}.
2x^{2}+2x-12=0
Subtract 13 from both sides of the equation.
x=\frac{-2±\sqrt{2^{2}-4\times 2\left(-12\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 1\times 1\times 2 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 2\left(-12\right)}}{2\times 2}
Square 1\times 1\times 1\times 2.
x=\frac{-2±\sqrt{4-8\left(-12\right)}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
x=\frac{-2±\sqrt{4+96}}{2\times 2}
Multiply -8 times -12.
x=\frac{-2±\sqrt{100}}{2\times 2}
Add 4 to 96.
x=\frac{-2±10}{2\times 2}
Take the square root of 100.
x=\frac{-2±10}{4}
Multiply 2 times 1+1\times 1^{2}.
x=\frac{8}{4}
Now solve the equation x=\frac{-2±10}{4} when ± is plus. Add -2 to 10.
x=2
Divide 8 by 4.
x=-\frac{12}{4}
Now solve the equation x=\frac{-2±10}{4} when ± is minus. Subtract 10 from -2.
x=-3
Divide -12 by 4.
y=2+1
There are two solutions for x: 2 and -3. Substitute 2 for x in the equation y=x+1 to find the corresponding solution for y that satisfies both equations.
y=3
Add 1\times 2 to 1.
y=-3+1
Now substitute -3 for x in the equation y=x+1 and solve to find the corresponding solution for y that satisfies both equations.
y=-2
Add -3 to 1.
y=3,x=2\text{ or }y=-2,x=-3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}