Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-2y=4,y^{2}+x^{2}=13
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-2y=4
Solve x-2y=4 for x by isolating x on the left hand side of the equal sign.
x=2y+4
Subtract -2y from both sides of the equation.
y^{2}+\left(2y+4\right)^{2}=13
Substitute 2y+4 for x in the other equation, y^{2}+x^{2}=13.
y^{2}+4y^{2}+16y+16=13
Square 2y+4.
5y^{2}+16y+16=13
Add y^{2} to 4y^{2}.
5y^{2}+16y+3=0
Subtract 13 from both sides of the equation.
y=\frac{-16±\sqrt{16^{2}-4\times 5\times 3}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 2^{2} for a, 1\times 4\times 2\times 2 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-16±\sqrt{256-4\times 5\times 3}}{2\times 5}
Square 1\times 4\times 2\times 2.
y=\frac{-16±\sqrt{256-20\times 3}}{2\times 5}
Multiply -4 times 1+1\times 2^{2}.
y=\frac{-16±\sqrt{256-60}}{2\times 5}
Multiply -20 times 3.
y=\frac{-16±\sqrt{196}}{2\times 5}
Add 256 to -60.
y=\frac{-16±14}{2\times 5}
Take the square root of 196.
y=\frac{-16±14}{10}
Multiply 2 times 1+1\times 2^{2}.
y=-\frac{2}{10}
Now solve the equation y=\frac{-16±14}{10} when ± is plus. Add -16 to 14.
y=-\frac{1}{5}
Reduce the fraction \frac{-2}{10} to lowest terms by extracting and canceling out 2.
y=-\frac{30}{10}
Now solve the equation y=\frac{-16±14}{10} when ± is minus. Subtract 14 from -16.
y=-3
Divide -30 by 10.
x=2\left(-\frac{1}{5}\right)+4
There are two solutions for y: -\frac{1}{5} and -3. Substitute -\frac{1}{5} for y in the equation x=2y+4 to find the corresponding solution for x that satisfies both equations.
x=-\frac{2}{5}+4
Multiply 2 times -\frac{1}{5}.
x=\frac{18}{5}
Add -\frac{1}{5}\times 2 to 4.
x=2\left(-3\right)+4
Now substitute -3 for y in the equation x=2y+4 and solve to find the corresponding solution for x that satisfies both equations.
x=-6+4
Multiply 2 times -3.
x=-2
Add -3\times 2 to 4.
x=\frac{18}{5},y=-\frac{1}{5}\text{ or }x=-2,y=-3
The system is now solved.