Solve for x, y
x=\frac{18}{5}=3.6\text{, }y=-\frac{1}{5}=-0.2
x=-2\text{, }y=-3
Graph
Share
Copied to clipboard
x-2y=4,y^{2}+x^{2}=13
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-2y=4
Solve x-2y=4 for x by isolating x on the left hand side of the equal sign.
x=2y+4
Subtract -2y from both sides of the equation.
y^{2}+\left(2y+4\right)^{2}=13
Substitute 2y+4 for x in the other equation, y^{2}+x^{2}=13.
y^{2}+4y^{2}+16y+16=13
Square 2y+4.
5y^{2}+16y+16=13
Add y^{2} to 4y^{2}.
5y^{2}+16y+3=0
Subtract 13 from both sides of the equation.
y=\frac{-16±\sqrt{16^{2}-4\times 5\times 3}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 2^{2} for a, 1\times 4\times 2\times 2 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-16±\sqrt{256-4\times 5\times 3}}{2\times 5}
Square 1\times 4\times 2\times 2.
y=\frac{-16±\sqrt{256-20\times 3}}{2\times 5}
Multiply -4 times 1+1\times 2^{2}.
y=\frac{-16±\sqrt{256-60}}{2\times 5}
Multiply -20 times 3.
y=\frac{-16±\sqrt{196}}{2\times 5}
Add 256 to -60.
y=\frac{-16±14}{2\times 5}
Take the square root of 196.
y=\frac{-16±14}{10}
Multiply 2 times 1+1\times 2^{2}.
y=-\frac{2}{10}
Now solve the equation y=\frac{-16±14}{10} when ± is plus. Add -16 to 14.
y=-\frac{1}{5}
Reduce the fraction \frac{-2}{10} to lowest terms by extracting and canceling out 2.
y=-\frac{30}{10}
Now solve the equation y=\frac{-16±14}{10} when ± is minus. Subtract 14 from -16.
y=-3
Divide -30 by 10.
x=2\left(-\frac{1}{5}\right)+4
There are two solutions for y: -\frac{1}{5} and -3. Substitute -\frac{1}{5} for y in the equation x=2y+4 to find the corresponding solution for x that satisfies both equations.
x=-\frac{2}{5}+4
Multiply 2 times -\frac{1}{5}.
x=\frac{18}{5}
Add -\frac{1}{5}\times 2 to 4.
x=2\left(-3\right)+4
Now substitute -3 for y in the equation x=2y+4 and solve to find the corresponding solution for x that satisfies both equations.
x=-6+4
Multiply 2 times -3.
x=-2
Add -3\times 2 to 4.
x=\frac{18}{5},y=-\frac{1}{5}\text{ or }x=-2,y=-3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}