Solve for x, y
x=3\text{, }y=2
x=\frac{1}{5}=0.2\text{, }y=-\frac{18}{5}=-3.6
Graph
Share
Copied to clipboard
2x-y=4,y^{2}+x^{2}=13
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x-y=4
Solve 2x-y=4 for x by isolating x on the left hand side of the equal sign.
2x=y+4
Subtract -y from both sides of the equation.
x=\frac{1}{2}y+2
Divide both sides by 2.
y^{2}+\left(\frac{1}{2}y+2\right)^{2}=13
Substitute \frac{1}{2}y+2 for x in the other equation, y^{2}+x^{2}=13.
y^{2}+\frac{1}{4}y^{2}+2y+4=13
Square \frac{1}{2}y+2.
\frac{5}{4}y^{2}+2y+4=13
Add y^{2} to \frac{1}{4}y^{2}.
\frac{5}{4}y^{2}+2y-9=0
Subtract 13 from both sides of the equation.
y=\frac{-2±\sqrt{2^{2}-4\times \frac{5}{4}\left(-9\right)}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times \left(\frac{1}{2}\right)^{2} for a, 1\times 2\times \frac{1}{2}\times 2 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-2±\sqrt{4-4\times \frac{5}{4}\left(-9\right)}}{2\times \frac{5}{4}}
Square 1\times 2\times \frac{1}{2}\times 2.
y=\frac{-2±\sqrt{4-5\left(-9\right)}}{2\times \frac{5}{4}}
Multiply -4 times 1+1\times \left(\frac{1}{2}\right)^{2}.
y=\frac{-2±\sqrt{4+45}}{2\times \frac{5}{4}}
Multiply -5 times -9.
y=\frac{-2±\sqrt{49}}{2\times \frac{5}{4}}
Add 4 to 45.
y=\frac{-2±7}{2\times \frac{5}{4}}
Take the square root of 49.
y=\frac{-2±7}{\frac{5}{2}}
Multiply 2 times 1+1\times \left(\frac{1}{2}\right)^{2}.
y=\frac{5}{\frac{5}{2}}
Now solve the equation y=\frac{-2±7}{\frac{5}{2}} when ± is plus. Add -2 to 7.
y=2
Divide 5 by \frac{5}{2} by multiplying 5 by the reciprocal of \frac{5}{2}.
y=-\frac{9}{\frac{5}{2}}
Now solve the equation y=\frac{-2±7}{\frac{5}{2}} when ± is minus. Subtract 7 from -2.
y=-\frac{18}{5}
Divide -9 by \frac{5}{2} by multiplying -9 by the reciprocal of \frac{5}{2}.
x=\frac{1}{2}\times 2+2
There are two solutions for y: 2 and -\frac{18}{5}. Substitute 2 for y in the equation x=\frac{1}{2}y+2 to find the corresponding solution for x that satisfies both equations.
x=1+2
Multiply \frac{1}{2} times 2.
x=3
Add \frac{1}{2}\times 2 to 2.
x=\frac{1}{2}\left(-\frac{18}{5}\right)+2
Now substitute -\frac{18}{5} for y in the equation x=\frac{1}{2}y+2 and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{9}{5}+2
Multiply \frac{1}{2} times -\frac{18}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{1}{5}
Add -\frac{18}{5}\times \frac{1}{2} to 2.
x=3,y=2\text{ or }x=\frac{1}{5},y=-\frac{18}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}