Solve for x, y
x=\frac{3\sqrt{919}+19}{10}\approx 10.994503835\text{, }y=\frac{57-\sqrt{919}}{10}\approx 2.668498722
x=\frac{19-3\sqrt{919}}{10}\approx -7.194503835\text{, }y=\frac{\sqrt{919}+57}{10}\approx 8.731501278
Graph
Share
Copied to clipboard
x+3y=19,y^{2}+x^{2}=128
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+3y=19
Solve x+3y=19 for x by isolating x on the left hand side of the equal sign.
x=-3y+19
Subtract 3y from both sides of the equation.
y^{2}+\left(-3y+19\right)^{2}=128
Substitute -3y+19 for x in the other equation, y^{2}+x^{2}=128.
y^{2}+9y^{2}-114y+361=128
Square -3y+19.
10y^{2}-114y+361=128
Add y^{2} to 9y^{2}.
10y^{2}-114y+233=0
Subtract 128 from both sides of the equation.
y=\frac{-\left(-114\right)±\sqrt{\left(-114\right)^{2}-4\times 10\times 233}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-3\right)^{2} for a, 1\times 19\left(-3\right)\times 2 for b, and 233 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-114\right)±\sqrt{12996-4\times 10\times 233}}{2\times 10}
Square 1\times 19\left(-3\right)\times 2.
y=\frac{-\left(-114\right)±\sqrt{12996-40\times 233}}{2\times 10}
Multiply -4 times 1+1\left(-3\right)^{2}.
y=\frac{-\left(-114\right)±\sqrt{12996-9320}}{2\times 10}
Multiply -40 times 233.
y=\frac{-\left(-114\right)±\sqrt{3676}}{2\times 10}
Add 12996 to -9320.
y=\frac{-\left(-114\right)±2\sqrt{919}}{2\times 10}
Take the square root of 3676.
y=\frac{114±2\sqrt{919}}{2\times 10}
The opposite of 1\times 19\left(-3\right)\times 2 is 114.
y=\frac{114±2\sqrt{919}}{20}
Multiply 2 times 1+1\left(-3\right)^{2}.
y=\frac{2\sqrt{919}+114}{20}
Now solve the equation y=\frac{114±2\sqrt{919}}{20} when ± is plus. Add 114 to 2\sqrt{919}.
y=\frac{\sqrt{919}+57}{10}
Divide 114+2\sqrt{919} by 20.
y=\frac{114-2\sqrt{919}}{20}
Now solve the equation y=\frac{114±2\sqrt{919}}{20} when ± is minus. Subtract 2\sqrt{919} from 114.
y=\frac{57-\sqrt{919}}{10}
Divide 114-2\sqrt{919} by 20.
x=-3\times \frac{\sqrt{919}+57}{10}+19
There are two solutions for y: \frac{57+\sqrt{919}}{10} and \frac{57-\sqrt{919}}{10}. Substitute \frac{57+\sqrt{919}}{10} for y in the equation x=-3y+19 to find the corresponding solution for x that satisfies both equations.
x=-3\times \frac{57-\sqrt{919}}{10}+19
Now substitute \frac{57-\sqrt{919}}{10} for y in the equation x=-3y+19 and solve to find the corresponding solution for x that satisfies both equations.
x=-3\times \frac{\sqrt{919}+57}{10}+19,y=\frac{\sqrt{919}+57}{10}\text{ or }x=-3\times \frac{57-\sqrt{919}}{10}+19,y=\frac{57-\sqrt{919}}{10}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}