Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+3y=19,y^{2}+x^{2}=128
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+3y=19
Solve x+3y=19 for x by isolating x on the left hand side of the equal sign.
x=-3y+19
Subtract 3y from both sides of the equation.
y^{2}+\left(-3y+19\right)^{2}=128
Substitute -3y+19 for x in the other equation, y^{2}+x^{2}=128.
y^{2}+9y^{2}-114y+361=128
Square -3y+19.
10y^{2}-114y+361=128
Add y^{2} to 9y^{2}.
10y^{2}-114y+233=0
Subtract 128 from both sides of the equation.
y=\frac{-\left(-114\right)±\sqrt{\left(-114\right)^{2}-4\times 10\times 233}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-3\right)^{2} for a, 1\times 19\left(-3\right)\times 2 for b, and 233 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-114\right)±\sqrt{12996-4\times 10\times 233}}{2\times 10}
Square 1\times 19\left(-3\right)\times 2.
y=\frac{-\left(-114\right)±\sqrt{12996-40\times 233}}{2\times 10}
Multiply -4 times 1+1\left(-3\right)^{2}.
y=\frac{-\left(-114\right)±\sqrt{12996-9320}}{2\times 10}
Multiply -40 times 233.
y=\frac{-\left(-114\right)±\sqrt{3676}}{2\times 10}
Add 12996 to -9320.
y=\frac{-\left(-114\right)±2\sqrt{919}}{2\times 10}
Take the square root of 3676.
y=\frac{114±2\sqrt{919}}{2\times 10}
The opposite of 1\times 19\left(-3\right)\times 2 is 114.
y=\frac{114±2\sqrt{919}}{20}
Multiply 2 times 1+1\left(-3\right)^{2}.
y=\frac{2\sqrt{919}+114}{20}
Now solve the equation y=\frac{114±2\sqrt{919}}{20} when ± is plus. Add 114 to 2\sqrt{919}.
y=\frac{\sqrt{919}+57}{10}
Divide 114+2\sqrt{919} by 20.
y=\frac{114-2\sqrt{919}}{20}
Now solve the equation y=\frac{114±2\sqrt{919}}{20} when ± is minus. Subtract 2\sqrt{919} from 114.
y=\frac{57-\sqrt{919}}{10}
Divide 114-2\sqrt{919} by 20.
x=-3\times \frac{\sqrt{919}+57}{10}+19
There are two solutions for y: \frac{57+\sqrt{919}}{10} and \frac{57-\sqrt{919}}{10}. Substitute \frac{57+\sqrt{919}}{10} for y in the equation x=-3y+19 to find the corresponding solution for x that satisfies both equations.
x=-3\times \frac{57-\sqrt{919}}{10}+19
Now substitute \frac{57-\sqrt{919}}{10} for y in the equation x=-3y+19 and solve to find the corresponding solution for x that satisfies both equations.
x=-3\times \frac{\sqrt{919}+57}{10}+19,y=\frac{\sqrt{919}+57}{10}\text{ or }x=-3\times \frac{57-\sqrt{919}}{10}+19,y=\frac{57-\sqrt{919}}{10}
The system is now solved.