Solve for x, y
x=\frac{100\sqrt{107531653}+31304}{100601}\approx 10.618967016\text{, }y=\frac{10400-301\sqrt{107531653}}{100601}\approx -30.923090717
x=\frac{31304-100\sqrt{107531653}}{100601}\approx -9.996627278\text{, }y=\frac{301\sqrt{107531653}+10400}{100601}\approx 31.129848106
Graph
Share
Copied to clipboard
100y+301x=104,x^{2}+y^{2}=1069
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
100y+301x=104
Solve 100y+301x=104 for y by isolating y on the left hand side of the equal sign.
100y=-301x+104
Subtract 301x from both sides of the equation.
y=-\frac{301}{100}x+\frac{26}{25}
Divide both sides by 100.
x^{2}+\left(-\frac{301}{100}x+\frac{26}{25}\right)^{2}=1069
Substitute -\frac{301}{100}x+\frac{26}{25} for y in the other equation, x^{2}+y^{2}=1069.
x^{2}+\frac{90601}{10000}x^{2}-\frac{3913}{625}x+\frac{676}{625}=1069
Square -\frac{301}{100}x+\frac{26}{25}.
\frac{100601}{10000}x^{2}-\frac{3913}{625}x+\frac{676}{625}=1069
Add x^{2} to \frac{90601}{10000}x^{2}.
\frac{100601}{10000}x^{2}-\frac{3913}{625}x-\frac{667449}{625}=0
Subtract 1069 from both sides of the equation.
x=\frac{-\left(-\frac{3913}{625}\right)±\sqrt{\left(-\frac{3913}{625}\right)^{2}-4\times \frac{100601}{10000}\left(-\frac{667449}{625}\right)}}{2\times \frac{100601}{10000}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\frac{301}{100}\right)^{2} for a, 1\times \frac{26}{25}\left(-\frac{301}{100}\right)\times 2 for b, and -\frac{667449}{625} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3913}{625}\right)±\sqrt{\frac{15311569}{390625}-4\times \frac{100601}{10000}\left(-\frac{667449}{625}\right)}}{2\times \frac{100601}{10000}}
Square 1\times \frac{26}{25}\left(-\frac{301}{100}\right)\times 2.
x=\frac{-\left(-\frac{3913}{625}\right)±\sqrt{\frac{15311569}{390625}-\frac{100601}{2500}\left(-\frac{667449}{625}\right)}}{2\times \frac{100601}{10000}}
Multiply -4 times 1+1\left(-\frac{301}{100}\right)^{2}.
x=\frac{-\left(-\frac{3913}{625}\right)±\sqrt{\frac{15311569}{390625}+\frac{67146036849}{1562500}}}{2\times \frac{100601}{10000}}
Multiply -\frac{100601}{2500} times -\frac{667449}{625} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{3913}{625}\right)±\sqrt{\frac{107531653}{2500}}}{2\times \frac{100601}{10000}}
Add \frac{15311569}{390625} to \frac{67146036849}{1562500} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{3913}{625}\right)±\frac{\sqrt{107531653}}{50}}{2\times \frac{100601}{10000}}
Take the square root of \frac{107531653}{2500}.
x=\frac{\frac{3913}{625}±\frac{\sqrt{107531653}}{50}}{2\times \frac{100601}{10000}}
The opposite of 1\times \frac{26}{25}\left(-\frac{301}{100}\right)\times 2 is \frac{3913}{625}.
x=\frac{\frac{3913}{625}±\frac{\sqrt{107531653}}{50}}{\frac{100601}{5000}}
Multiply 2 times 1+1\left(-\frac{301}{100}\right)^{2}.
x=\frac{\frac{\sqrt{107531653}}{50}+\frac{3913}{625}}{\frac{100601}{5000}}
Now solve the equation x=\frac{\frac{3913}{625}±\frac{\sqrt{107531653}}{50}}{\frac{100601}{5000}} when ± is plus. Add \frac{3913}{625} to \frac{\sqrt{107531653}}{50}.
x=\frac{100\sqrt{107531653}+31304}{100601}
Divide \frac{3913}{625}+\frac{\sqrt{107531653}}{50} by \frac{100601}{5000} by multiplying \frac{3913}{625}+\frac{\sqrt{107531653}}{50} by the reciprocal of \frac{100601}{5000}.
x=\frac{-\frac{\sqrt{107531653}}{50}+\frac{3913}{625}}{\frac{100601}{5000}}
Now solve the equation x=\frac{\frac{3913}{625}±\frac{\sqrt{107531653}}{50}}{\frac{100601}{5000}} when ± is minus. Subtract \frac{\sqrt{107531653}}{50} from \frac{3913}{625}.
x=\frac{31304-100\sqrt{107531653}}{100601}
Divide \frac{3913}{625}-\frac{\sqrt{107531653}}{50} by \frac{100601}{5000} by multiplying \frac{3913}{625}-\frac{\sqrt{107531653}}{50} by the reciprocal of \frac{100601}{5000}.
y=-\frac{301}{100}\times \frac{100\sqrt{107531653}+31304}{100601}+\frac{26}{25}
There are two solutions for x: \frac{31304+100\sqrt{107531653}}{100601} and \frac{31304-100\sqrt{107531653}}{100601}. Substitute \frac{31304+100\sqrt{107531653}}{100601} for x in the equation y=-\frac{301}{100}x+\frac{26}{25} to find the corresponding solution for y that satisfies both equations.
y=-\frac{301\times \frac{100\sqrt{107531653}+31304}{100601}}{100}+\frac{26}{25}
Multiply -\frac{301}{100} times \frac{31304+100\sqrt{107531653}}{100601}.
y=-\frac{301}{100}\times \frac{31304-100\sqrt{107531653}}{100601}+\frac{26}{25}
Now substitute \frac{31304-100\sqrt{107531653}}{100601} for x in the equation y=-\frac{301}{100}x+\frac{26}{25} and solve to find the corresponding solution for y that satisfies both equations.
y=-\frac{301\times \frac{31304-100\sqrt{107531653}}{100601}}{100}+\frac{26}{25}
Multiply -\frac{301}{100} times \frac{31304-100\sqrt{107531653}}{100601}.
y=-\frac{301\times \frac{100\sqrt{107531653}+31304}{100601}}{100}+\frac{26}{25},x=\frac{100\sqrt{107531653}+31304}{100601}\text{ or }y=-\frac{301\times \frac{31304-100\sqrt{107531653}}{100601}}{100}+\frac{26}{25},x=\frac{31304-100\sqrt{107531653}}{100601}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}