Solve for x, y
x=\frac{20\sqrt{183}+2}{29}\approx 9.398447764\text{, }y=\frac{5-8\sqrt{183}}{29}\approx -3.559379106
x=\frac{2-20\sqrt{183}}{29}\approx -9.26051673\text{, }y=\frac{8\sqrt{183}+5}{29}\approx 3.904206692
Graph
Share
Copied to clipboard
2x+5y=1,y^{2}+x^{2}=101
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+5y=1
Solve 2x+5y=1 for x by isolating x on the left hand side of the equal sign.
2x=-5y+1
Subtract 5y from both sides of the equation.
x=-\frac{5}{2}y+\frac{1}{2}
Divide both sides by 2.
y^{2}+\left(-\frac{5}{2}y+\frac{1}{2}\right)^{2}=101
Substitute -\frac{5}{2}y+\frac{1}{2} for x in the other equation, y^{2}+x^{2}=101.
y^{2}+\frac{25}{4}y^{2}-\frac{5}{2}y+\frac{1}{4}=101
Square -\frac{5}{2}y+\frac{1}{2}.
\frac{29}{4}y^{2}-\frac{5}{2}y+\frac{1}{4}=101
Add y^{2} to \frac{25}{4}y^{2}.
\frac{29}{4}y^{2}-\frac{5}{2}y-\frac{403}{4}=0
Subtract 101 from both sides of the equation.
y=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\left(-\frac{5}{2}\right)^{2}-4\times \frac{29}{4}\left(-\frac{403}{4}\right)}}{2\times \frac{29}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\frac{5}{2}\right)^{2} for a, 1\times \frac{1}{2}\left(-\frac{5}{2}\right)\times 2 for b, and -\frac{403}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{25}{4}-4\times \frac{29}{4}\left(-\frac{403}{4}\right)}}{2\times \frac{29}{4}}
Square 1\times \frac{1}{2}\left(-\frac{5}{2}\right)\times 2.
y=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{25}{4}-29\left(-\frac{403}{4}\right)}}{2\times \frac{29}{4}}
Multiply -4 times 1+1\left(-\frac{5}{2}\right)^{2}.
y=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{25+11687}{4}}}{2\times \frac{29}{4}}
Multiply -29 times -\frac{403}{4}.
y=\frac{-\left(-\frac{5}{2}\right)±\sqrt{2928}}{2\times \frac{29}{4}}
Add \frac{25}{4} to \frac{11687}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{5}{2}\right)±4\sqrt{183}}{2\times \frac{29}{4}}
Take the square root of 2928.
y=\frac{\frac{5}{2}±4\sqrt{183}}{2\times \frac{29}{4}}
The opposite of 1\times \frac{1}{2}\left(-\frac{5}{2}\right)\times 2 is \frac{5}{2}.
y=\frac{\frac{5}{2}±4\sqrt{183}}{\frac{29}{2}}
Multiply 2 times 1+1\left(-\frac{5}{2}\right)^{2}.
y=\frac{4\sqrt{183}+\frac{5}{2}}{\frac{29}{2}}
Now solve the equation y=\frac{\frac{5}{2}±4\sqrt{183}}{\frac{29}{2}} when ± is plus. Add \frac{5}{2} to 4\sqrt{183}.
y=\frac{8\sqrt{183}+5}{29}
Divide \frac{5}{2}+4\sqrt{183} by \frac{29}{2} by multiplying \frac{5}{2}+4\sqrt{183} by the reciprocal of \frac{29}{2}.
y=\frac{\frac{5}{2}-4\sqrt{183}}{\frac{29}{2}}
Now solve the equation y=\frac{\frac{5}{2}±4\sqrt{183}}{\frac{29}{2}} when ± is minus. Subtract 4\sqrt{183} from \frac{5}{2}.
y=\frac{5-8\sqrt{183}}{29}
Divide \frac{5}{2}-4\sqrt{183} by \frac{29}{2} by multiplying \frac{5}{2}-4\sqrt{183} by the reciprocal of \frac{29}{2}.
x=-\frac{5}{2}\times \frac{8\sqrt{183}+5}{29}+\frac{1}{2}
There are two solutions for y: \frac{5+8\sqrt{183}}{29} and \frac{5-8\sqrt{183}}{29}. Substitute \frac{5+8\sqrt{183}}{29} for y in the equation x=-\frac{5}{2}y+\frac{1}{2} to find the corresponding solution for x that satisfies both equations.
x=\frac{-5\times \frac{8\sqrt{183}+5}{29}+1}{2}
Multiply -\frac{5}{2} times \frac{5+8\sqrt{183}}{29}.
x=-\frac{5}{2}\times \frac{5-8\sqrt{183}}{29}+\frac{1}{2}
Now substitute \frac{5-8\sqrt{183}}{29} for y in the equation x=-\frac{5}{2}y+\frac{1}{2} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{-5\times \frac{5-8\sqrt{183}}{29}+1}{2}
Multiply -\frac{5}{2} times \frac{5-8\sqrt{183}}{29}.
x=\frac{-5\times \frac{8\sqrt{183}+5}{29}+1}{2},y=\frac{8\sqrt{183}+5}{29}\text{ or }x=\frac{-5\times \frac{5-8\sqrt{183}}{29}+1}{2},y=\frac{5-8\sqrt{183}}{29}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}