Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-5y=0
Consider the second equation. Subtract 5y from both sides.
x-5y=0,y^{2}+x^{2}=10
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-5y=0
Solve x-5y=0 for x by isolating x on the left hand side of the equal sign.
x=5y
Subtract -5y from both sides of the equation.
y^{2}+\left(5y\right)^{2}=10
Substitute 5y for x in the other equation, y^{2}+x^{2}=10.
y^{2}+25y^{2}=10
Square 5y.
26y^{2}=10
Add y^{2} to 25y^{2}.
26y^{2}-10=0
Subtract 10 from both sides of the equation.
y=\frac{0±\sqrt{0^{2}-4\times 26\left(-10\right)}}{2\times 26}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 5^{2} for a, 1\times 0\times 2\times 5 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 26\left(-10\right)}}{2\times 26}
Square 1\times 0\times 2\times 5.
y=\frac{0±\sqrt{-104\left(-10\right)}}{2\times 26}
Multiply -4 times 1+1\times 5^{2}.
y=\frac{0±\sqrt{1040}}{2\times 26}
Multiply -104 times -10.
y=\frac{0±4\sqrt{65}}{2\times 26}
Take the square root of 1040.
y=\frac{0±4\sqrt{65}}{52}
Multiply 2 times 1+1\times 5^{2}.
y=\frac{\sqrt{65}}{13}
Now solve the equation y=\frac{0±4\sqrt{65}}{52} when ± is plus.
y=-\frac{\sqrt{65}}{13}
Now solve the equation y=\frac{0±4\sqrt{65}}{52} when ± is minus.
x=5\times \frac{\sqrt{65}}{13}
There are two solutions for y: \frac{\sqrt{65}}{13} and -\frac{\sqrt{65}}{13}. Substitute \frac{\sqrt{65}}{13} for y in the equation x=5y to find the corresponding solution for x that satisfies both equations.
x=5\left(-\frac{\sqrt{65}}{13}\right)
Now substitute -\frac{\sqrt{65}}{13} for y in the equation x=5y and solve to find the corresponding solution for x that satisfies both equations.
x=5\times \frac{\sqrt{65}}{13},y=\frac{\sqrt{65}}{13}\text{ or }x=5\left(-\frac{\sqrt{65}}{13}\right),y=-\frac{\sqrt{65}}{13}
The system is now solved.