Skip to main content
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

y+4x=7
Solve y+4x=7 for y by isolating y on the left hand side of the equal sign.
y=-4x+7
Subtract 4x from both sides of the equation.
x^{2}+\left(-4x+7\right)^{2}=1
Substitute -4x+7 for y in the other equation, x^{2}+y^{2}=1.
x^{2}+16x^{2}-56x+49=1
Square -4x+7.
17x^{2}-56x+49=1
Add x^{2} to 16x^{2}.
17x^{2}-56x+48=0
Subtract 1 from both sides of the equation.
x=\frac{-\left(-56\right)±\sqrt{\left(-56\right)^{2}-4\times 17\times 48}}{2\times 17}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-4\right)^{2} for a, 1\times 7\left(-4\right)\times 2 for b, and 48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-56\right)±\sqrt{3136-4\times 17\times 48}}{2\times 17}
Square 1\times 7\left(-4\right)\times 2.
x=\frac{-\left(-56\right)±\sqrt{3136-68\times 48}}{2\times 17}
Multiply -4 times 1+1\left(-4\right)^{2}.
x=\frac{-\left(-56\right)±\sqrt{3136-3264}}{2\times 17}
Multiply -68 times 48.
x=\frac{-\left(-56\right)±\sqrt{-128}}{2\times 17}
Add 3136 to -3264.
x=\frac{-\left(-56\right)±8\sqrt{2}i}{2\times 17}
Take the square root of -128.
x=\frac{56±8\sqrt{2}i}{2\times 17}
The opposite of 1\times 7\left(-4\right)\times 2 is 56.
x=\frac{56±8\sqrt{2}i}{34}
Multiply 2 times 1+1\left(-4\right)^{2}.
x=\frac{56+2^{\frac{7}{2}}i}{34}
Now solve the equation x=\frac{56±8\sqrt{2}i}{34} when ± is plus. Add 56 to 8i\sqrt{2}.
x=\frac{28+4\sqrt{2}i}{17}
Divide 56+i\times 2^{\frac{7}{2}} by 34.
x=\frac{-2^{\frac{7}{2}}i+56}{34}
Now solve the equation x=\frac{56±8\sqrt{2}i}{34} when ± is minus. Subtract 8i\sqrt{2} from 56.
x=\frac{-4\sqrt{2}i+28}{17}
Divide 56-i\times 2^{\frac{7}{2}} by 34.
y=-4\times \frac{28+4\sqrt{2}i}{17}+7
There are two solutions for x: \frac{28+4i\sqrt{2}}{17} and \frac{28-4i\sqrt{2}}{17}. Substitute \frac{28+4i\sqrt{2}}{17} for x in the equation y=-4x+7 to find the corresponding solution for y that satisfies both equations.
y=-4\times \frac{-4\sqrt{2}i+28}{17}+7
Now substitute \frac{28-4i\sqrt{2}}{17} for x in the equation y=-4x+7 and solve to find the corresponding solution for y that satisfies both equations.
y=-4\times \frac{28+4\sqrt{2}i}{17}+7,x=\frac{28+4\sqrt{2}i}{17}\text{ or }y=-4\times \frac{-4\sqrt{2}i+28}{17}+7,x=\frac{-4\sqrt{2}i+28}{17}
The system is now solved.