Skip to main content
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y-5=0
Solve x+y-5=0 for x by isolating x on the left hand side of the equal sign.
x+y=5
Add 5 to both sides of the equation.
x=-y+5
Subtract y from both sides of the equation.
y^{2}+\left(-y+5\right)^{2}=1
Substitute -y+5 for x in the other equation, y^{2}+x^{2}=1.
y^{2}+y^{2}-10y+25=1
Square -y+5.
2y^{2}-10y+25=1
Add y^{2} to y^{2}.
2y^{2}-10y+24=0
Subtract 1 from both sides of the equation.
y=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 2\times 24}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 5\left(-1\right)\times 2 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-10\right)±\sqrt{100-4\times 2\times 24}}{2\times 2}
Square 1\times 5\left(-1\right)\times 2.
y=\frac{-\left(-10\right)±\sqrt{100-8\times 24}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-10\right)±\sqrt{100-192}}{2\times 2}
Multiply -8 times 24.
y=\frac{-\left(-10\right)±\sqrt{-92}}{2\times 2}
Add 100 to -192.
y=\frac{-\left(-10\right)±2\sqrt{23}i}{2\times 2}
Take the square root of -92.
y=\frac{10±2\sqrt{23}i}{2\times 2}
The opposite of 1\times 5\left(-1\right)\times 2 is 10.
y=\frac{10±2\sqrt{23}i}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{10+2\sqrt{23}i}{4}
Now solve the equation y=\frac{10±2\sqrt{23}i}{4} when ± is plus. Add 10 to 2i\sqrt{23}.
y=\frac{5+\sqrt{23}i}{2}
Divide 10+2i\sqrt{23} by 4.
y=\frac{-2\sqrt{23}i+10}{4}
Now solve the equation y=\frac{10±2\sqrt{23}i}{4} when ± is minus. Subtract 2i\sqrt{23} from 10.
y=\frac{-\sqrt{23}i+5}{2}
Divide 10-2i\sqrt{23} by 4.
x=-\frac{5+\sqrt{23}i}{2}+5
There are two solutions for y: \frac{5+i\sqrt{23}}{2} and \frac{5-i\sqrt{23}}{2}. Substitute \frac{5+i\sqrt{23}}{2} for y in the equation x=-y+5 to find the corresponding solution for x that satisfies both equations.
x=-\frac{-\sqrt{23}i+5}{2}+5
Now substitute \frac{5-i\sqrt{23}}{2} for y in the equation x=-y+5 and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{5+\sqrt{23}i}{2}+5,y=\frac{5+\sqrt{23}i}{2}\text{ or }x=-\frac{-\sqrt{23}i+5}{2}+5,y=\frac{-\sqrt{23}i+5}{2}
The system is now solved.