Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-2y=0,y^{2}+x^{2}=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-2y=0
Solve x-2y=0 for x by isolating x on the left hand side of the equal sign.
x=2y
Subtract -2y from both sides of the equation.
y^{2}+\left(2y\right)^{2}=1
Substitute 2y for x in the other equation, y^{2}+x^{2}=1.
y^{2}+4y^{2}=1
Square 2y.
5y^{2}=1
Add y^{2} to 4y^{2}.
5y^{2}-1=0
Subtract 1 from both sides of the equation.
y=\frac{0±\sqrt{0^{2}-4\times 5\left(-1\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 2^{2} for a, 1\times 0\times 2\times 2 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 5\left(-1\right)}}{2\times 5}
Square 1\times 0\times 2\times 2.
y=\frac{0±\sqrt{-20\left(-1\right)}}{2\times 5}
Multiply -4 times 1+1\times 2^{2}.
y=\frac{0±\sqrt{20}}{2\times 5}
Multiply -20 times -1.
y=\frac{0±2\sqrt{5}}{2\times 5}
Take the square root of 20.
y=\frac{0±2\sqrt{5}}{10}
Multiply 2 times 1+1\times 2^{2}.
y=\frac{\sqrt{5}}{5}
Now solve the equation y=\frac{0±2\sqrt{5}}{10} when ± is plus.
y=-\frac{\sqrt{5}}{5}
Now solve the equation y=\frac{0±2\sqrt{5}}{10} when ± is minus.
x=2\times \frac{\sqrt{5}}{5}
There are two solutions for y: \frac{\sqrt{5}}{5} and -\frac{\sqrt{5}}{5}. Substitute \frac{\sqrt{5}}{5} for y in the equation x=2y to find the corresponding solution for x that satisfies both equations.
x=2\left(-\frac{\sqrt{5}}{5}\right)
Now substitute -\frac{\sqrt{5}}{5} for y in the equation x=2y and solve to find the corresponding solution for x that satisfies both equations.
x=2\times \frac{\sqrt{5}}{5},y=\frac{\sqrt{5}}{5}\text{ or }x=2\left(-\frac{\sqrt{5}}{5}\right),y=-\frac{\sqrt{5}}{5}
The system is now solved.