Solve for x, y (complex solution)
x=\frac{\sqrt{14}i}{2}+2\approx 2+1.870828693i\text{, }y=-\frac{\sqrt{14}i}{2}+2\approx 2-1.870828693i
x=-\frac{\sqrt{14}i}{2}+2\approx 2-1.870828693i\text{, }y=\frac{\sqrt{14}i}{2}+2\approx 2+1.870828693i
Graph
Share
Copied to clipboard
x+y=4
Solve x+y=4 for x by isolating x on the left hand side of the equal sign.
x=-y+4
Subtract y from both sides of the equation.
y^{2}+\left(-y+4\right)^{2}=1
Substitute -y+4 for x in the other equation, y^{2}+x^{2}=1.
y^{2}+y^{2}-8y+16=1
Square -y+4.
2y^{2}-8y+16=1
Add y^{2} to y^{2}.
2y^{2}-8y+15=0
Subtract 1 from both sides of the equation.
y=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 15}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 4\left(-1\right)\times 2 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 15}}{2\times 2}
Square 1\times 4\left(-1\right)\times 2.
y=\frac{-\left(-8\right)±\sqrt{64-8\times 15}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-8\right)±\sqrt{64-120}}{2\times 2}
Multiply -8 times 15.
y=\frac{-\left(-8\right)±\sqrt{-56}}{2\times 2}
Add 64 to -120.
y=\frac{-\left(-8\right)±2\sqrt{14}i}{2\times 2}
Take the square root of -56.
y=\frac{8±2\sqrt{14}i}{2\times 2}
The opposite of 1\times 4\left(-1\right)\times 2 is 8.
y=\frac{8±2\sqrt{14}i}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{8+2\sqrt{14}i}{4}
Now solve the equation y=\frac{8±2\sqrt{14}i}{4} when ± is plus. Add 8 to 2i\sqrt{14}.
y=\frac{\sqrt{14}i}{2}+2
Divide 8+2i\sqrt{14} by 4.
y=\frac{-2\sqrt{14}i+8}{4}
Now solve the equation y=\frac{8±2\sqrt{14}i}{4} when ± is minus. Subtract 2i\sqrt{14} from 8.
y=-\frac{\sqrt{14}i}{2}+2
Divide 8-2i\sqrt{14} by 4.
x=-\left(\frac{\sqrt{14}i}{2}+2\right)+4
There are two solutions for y: 2+\frac{i\sqrt{14}}{2} and 2-\frac{i\sqrt{14}}{2}. Substitute 2+\frac{i\sqrt{14}}{2} for y in the equation x=-y+4 to find the corresponding solution for x that satisfies both equations.
x=-\left(-\frac{\sqrt{14}i}{2}+2\right)+4
Now substitute 2-\frac{i\sqrt{14}}{2} for y in the equation x=-y+4 and solve to find the corresponding solution for x that satisfies both equations.
x=-\left(\frac{\sqrt{14}i}{2}+2\right)+4,y=\frac{\sqrt{14}i}{2}+2\text{ or }x=-\left(-\frac{\sqrt{14}i}{2}+2\right)+4,y=-\frac{\sqrt{14}i}{2}+2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}