Solve for x, p
x=8\text{, }p=6
x=-6\text{, }p=-8
Graph
Share
Copied to clipboard
p-x+2=0,x^{2}+p^{2}-100=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
p-x+2=0
Solve p-x+2=0 for p by isolating p on the left hand side of the equal sign.
p-x=-2
Subtract 2 from both sides of the equation.
p=x-2
Subtract -x from both sides of the equation.
x^{2}+\left(x-2\right)^{2}-100=0
Substitute x-2 for p in the other equation, x^{2}+p^{2}-100=0.
x^{2}+x^{2}-4x+4-100=0
Square x-2.
2x^{2}-4x+4-100=0
Add x^{2} to x^{2}.
2x^{2}-4x-96=0
Add 1\left(-2\right)^{2} to -100.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-96\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\left(-2\right)\times 1\times 2 for b, and -96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-96\right)}}{2\times 2}
Square 1\left(-2\right)\times 1\times 2.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-96\right)}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
x=\frac{-\left(-4\right)±\sqrt{16+768}}{2\times 2}
Multiply -8 times -96.
x=\frac{-\left(-4\right)±\sqrt{784}}{2\times 2}
Add 16 to 768.
x=\frac{-\left(-4\right)±28}{2\times 2}
Take the square root of 784.
x=\frac{4±28}{2\times 2}
The opposite of 1\left(-2\right)\times 1\times 2 is 4.
x=\frac{4±28}{4}
Multiply 2 times 1+1\times 1^{2}.
x=\frac{32}{4}
Now solve the equation x=\frac{4±28}{4} when ± is plus. Add 4 to 28.
x=8
Divide 32 by 4.
x=-\frac{24}{4}
Now solve the equation x=\frac{4±28}{4} when ± is minus. Subtract 28 from 4.
x=-6
Divide -24 by 4.
p=8-2
There are two solutions for x: 8 and -6. Substitute 8 for x in the equation p=x-2 to find the corresponding solution for p that satisfies both equations.
p=6
Add 1\times 8 to -2.
p=-6-2
Now substitute -6 for x in the equation p=x-2 and solve to find the corresponding solution for p that satisfies both equations.
p=-8
Add -6 to -2.
p=6,x=8\text{ or }p=-8,x=-6
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}