Skip to main content
Solve for x, p
Tick mark Image
Graph

Similar Problems from Web Search

Share

p-x=-2,x^{2}+p^{2}=100
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
p-x=-2
Solve p-x=-2 for p by isolating p on the left hand side of the equal sign.
p=x-2
Subtract -x from both sides of the equation.
x^{2}+\left(x-2\right)^{2}=100
Substitute x-2 for p in the other equation, x^{2}+p^{2}=100.
x^{2}+x^{2}-4x+4=100
Square x-2.
2x^{2}-4x+4=100
Add x^{2} to x^{2}.
2x^{2}-4x-96=0
Subtract 100 from both sides of the equation.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-96\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\left(-2\right)\times 1\times 2 for b, and -96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-96\right)}}{2\times 2}
Square 1\left(-2\right)\times 1\times 2.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-96\right)}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
x=\frac{-\left(-4\right)±\sqrt{16+768}}{2\times 2}
Multiply -8 times -96.
x=\frac{-\left(-4\right)±\sqrt{784}}{2\times 2}
Add 16 to 768.
x=\frac{-\left(-4\right)±28}{2\times 2}
Take the square root of 784.
x=\frac{4±28}{2\times 2}
The opposite of 1\left(-2\right)\times 1\times 2 is 4.
x=\frac{4±28}{4}
Multiply 2 times 1+1\times 1^{2}.
x=\frac{32}{4}
Now solve the equation x=\frac{4±28}{4} when ± is plus. Add 4 to 28.
x=8
Divide 32 by 4.
x=-\frac{24}{4}
Now solve the equation x=\frac{4±28}{4} when ± is minus. Subtract 28 from 4.
x=-6
Divide -24 by 4.
p=8-2
There are two solutions for x: 8 and -6. Substitute 8 for x in the equation p=x-2 to find the corresponding solution for p that satisfies both equations.
p=6
Add 1\times 8 to -2.
p=-6-2
Now substitute -6 for x in the equation p=x-2 and solve to find the corresponding solution for p that satisfies both equations.
p=-8
Add -6 to -2.
p=6,x=8\text{ or }p=-8,x=-6
The system is now solved.