Solve for x, y
x=-\frac{\sqrt{15}}{5}\approx -0.774596669\text{, }y=-\frac{3\sqrt{5}}{5}\approx -1.341640786
x=\frac{\sqrt{15}}{5}\approx 0.774596669\text{, }y=\frac{3\sqrt{5}}{5}\approx 1.341640786
Graph
Share
Copied to clipboard
y-\sqrt{3}x=0
Consider the second equation. Subtract \sqrt{3}x from both sides.
-\sqrt{3}x+y=0
Reorder the terms.
\left(-\sqrt{3}\right)x+y=0,3y^{2}+x^{2}=6
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\left(-\sqrt{3}\right)x+y=0
Solve \left(-\sqrt{3}\right)x+y=0 for x by isolating x on the left hand side of the equal sign.
\left(-\sqrt{3}\right)x=-y
Subtract y from both sides of the equation.
x=\frac{\sqrt{3}}{3}y
Divide both sides by -\sqrt{3}.
3y^{2}+\left(\frac{\sqrt{3}}{3}y\right)^{2}=6
Substitute \frac{\sqrt{3}}{3}y for x in the other equation, 3y^{2}+x^{2}=6.
3y^{2}+\left(\frac{\sqrt{3}}{3}\right)^{2}y^{2}=6
Square \frac{\sqrt{3}}{3}y.
\left(\left(\frac{\sqrt{3}}{3}\right)^{2}+3\right)y^{2}=6
Add 3y^{2} to \left(\frac{\sqrt{3}}{3}\right)^{2}y^{2}.
\left(\left(\frac{\sqrt{3}}{3}\right)^{2}+3\right)y^{2}-6=0
Subtract 6 from both sides of the equation.
y=\frac{0±\sqrt{0^{2}-4\left(\left(\frac{\sqrt{3}}{3}\right)^{2}+3\right)\left(-6\right)}}{2\left(\left(\frac{\sqrt{3}}{3}\right)^{2}+3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3+1\times \left(\frac{\sqrt{3}}{3}\right)^{2} for a, 1\times 0\times 2\times \frac{\sqrt{3}}{3} for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(\left(\frac{\sqrt{3}}{3}\right)^{2}+3\right)\left(-6\right)}}{2\left(\left(\frac{\sqrt{3}}{3}\right)^{2}+3\right)}
Square 1\times 0\times 2\times \frac{\sqrt{3}}{3}.
y=\frac{0±\sqrt{-\frac{40}{3}\left(-6\right)}}{2\left(\left(\frac{\sqrt{3}}{3}\right)^{2}+3\right)}
Multiply -4 times 3+1\times \left(\frac{\sqrt{3}}{3}\right)^{2}.
y=\frac{0±\sqrt{80}}{2\left(\left(\frac{\sqrt{3}}{3}\right)^{2}+3\right)}
Multiply -\frac{40}{3} times -6.
y=\frac{0±4\sqrt{5}}{2\left(\left(\frac{\sqrt{3}}{3}\right)^{2}+3\right)}
Take the square root of 80.
y=\frac{0±4\sqrt{5}}{\frac{20}{3}}
Multiply 2 times 3+1\times \left(\frac{\sqrt{3}}{3}\right)^{2}.
y=\frac{3\sqrt{5}}{5}
Now solve the equation y=\frac{0±4\sqrt{5}}{\frac{20}{3}} when ± is plus.
y=-\frac{3\sqrt{5}}{5}
Now solve the equation y=\frac{0±4\sqrt{5}}{\frac{20}{3}} when ± is minus.
x=\frac{\sqrt{3}}{3}\times \frac{3\sqrt{5}}{5}
There are two solutions for y: \frac{3\sqrt{5}}{5} and -\frac{3\sqrt{5}}{5}. Substitute \frac{3\sqrt{5}}{5} for y in the equation x=\frac{\sqrt{3}}{3}y to find the corresponding solution for x that satisfies both equations.
x=\frac{\sqrt{3}}{3}\left(-\frac{3\sqrt{5}}{5}\right)
Now substitute -\frac{3\sqrt{5}}{5} for y in the equation x=\frac{\sqrt{3}}{3}y and solve to find the corresponding solution for x that satisfies both equations.
x=\left(-\frac{3\sqrt{5}}{5}\right)\times \frac{\sqrt{3}}{3}
Multiply \frac{\sqrt{3}}{3} times -\frac{3\sqrt{5}}{5}.
x=\frac{\sqrt{3}}{3}\times \frac{3\sqrt{5}}{5},y=\frac{3\sqrt{5}}{5}\text{ or }x=\left(-\frac{3\sqrt{5}}{5}\right)\times \frac{\sqrt{3}}{3},y=-\frac{3\sqrt{5}}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}