Skip to main content
Solve for x, z, y
Tick mark Image

Similar Problems from Web Search

Share

150x=-45z y=\frac{4}{5} z=x+y
Multiply each equation by the least common multiple of denominators in it. Simplify.
y=\frac{4}{5} 150x=-45z z=x+y
Reorder the equations.
z=x+\frac{4}{5}
Substitute \frac{4}{5} for y in the equation z=x+y.
z=-\frac{10}{3}x x=z-\frac{4}{5}
Solve the second equation for z and the third equation for x.
x=-\frac{10}{3}x-\frac{4}{5}
Substitute -\frac{10}{3}x for z in the equation x=z-\frac{4}{5}.
x=-\frac{12}{65}
Solve x=-\frac{10}{3}x-\frac{4}{5} for x.
z=-\frac{10}{3}\left(-\frac{12}{65}\right)
Substitute -\frac{12}{65} for x in the equation z=-\frac{10}{3}x.
z=\frac{8}{13}
Calculate z from z=-\frac{10}{3}\left(-\frac{12}{65}\right).
x=-\frac{12}{65} z=\frac{8}{13} y=\frac{4}{5}
The system is now solved.