Solve for x, y
x=-\log(e)\left(\ln(12000)-3\right)\approx -2.7762978
y=\log(e)\left(3-\ln(120)\right)\approx -0.7762978
Graph
Share
Copied to clipboard
x-y=-2
Consider the first equation. Subtract y from both sides.
y=\log_{10}\left(\frac{e^{3}}{120}\right),-y+x=-2
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y=\log_{10}\left(\frac{e^{3}}{120}\right)
Pick one of the two equations which is more simple to solve for y by isolating y on the left hand side of the equal sign.
y=\log(e)\left(3-\ln(120)\right)
Divide both sides by 1.
-\log(e)\left(3-\ln(120)\right)+x=-2
Substitute \left(-\ln(120)+3\right)\log(e) for y in the other equation, -y+x=-2.
x=\log(e)\left(\ln(\frac{1}{12000})+3\right)
Add \left(-\ln(120)+3\right)\log(e) to both sides of the equation.
y=\log(e)\left(3-\ln(120)\right),x=\log(e)\left(3-\ln(12000)\right)
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}