Solve for x, t
x=300
t=15
Graph
Share
Copied to clipboard
x-20t=0
Consider the first equation. Subtract 20t from both sides.
x=30t-150
Consider the second equation. Use the distributive property to multiply 30 by t-5.
x-30t=-150
Subtract 30t from both sides.
x-20t=0,x-30t=-150
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-20t=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=20t
Add 20t to both sides of the equation.
20t-30t=-150
Substitute 20t for x in the other equation, x-30t=-150.
-10t=-150
Add 20t to -30t.
t=15
Divide both sides by -10.
x=20\times 15
Substitute 15 for t in x=20t. Because the resulting equation contains only one variable, you can solve for x directly.
x=300
Multiply 20 times 15.
x=300,t=15
The system is now solved.
x-20t=0
Consider the first equation. Subtract 20t from both sides.
x=30t-150
Consider the second equation. Use the distributive property to multiply 30 by t-5.
x-30t=-150
Subtract 30t from both sides.
x-20t=0,x-30t=-150
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-20\\1&-30\end{matrix}\right)\left(\begin{matrix}x\\t\end{matrix}\right)=\left(\begin{matrix}0\\-150\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-20\\1&-30\end{matrix}\right))\left(\begin{matrix}1&-20\\1&-30\end{matrix}\right)\left(\begin{matrix}x\\t\end{matrix}\right)=inverse(\left(\begin{matrix}1&-20\\1&-30\end{matrix}\right))\left(\begin{matrix}0\\-150\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-20\\1&-30\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\t\end{matrix}\right)=inverse(\left(\begin{matrix}1&-20\\1&-30\end{matrix}\right))\left(\begin{matrix}0\\-150\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\t\end{matrix}\right)=inverse(\left(\begin{matrix}1&-20\\1&-30\end{matrix}\right))\left(\begin{matrix}0\\-150\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\t\end{matrix}\right)=\left(\begin{matrix}-\frac{30}{-30-\left(-20\right)}&-\frac{-20}{-30-\left(-20\right)}\\-\frac{1}{-30-\left(-20\right)}&\frac{1}{-30-\left(-20\right)}\end{matrix}\right)\left(\begin{matrix}0\\-150\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\t\end{matrix}\right)=\left(\begin{matrix}3&-2\\\frac{1}{10}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}0\\-150\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\t\end{matrix}\right)=\left(\begin{matrix}-2\left(-150\right)\\-\frac{1}{10}\left(-150\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\t\end{matrix}\right)=\left(\begin{matrix}300\\15\end{matrix}\right)
Do the arithmetic.
x=300,t=15
Extract the matrix elements x and t.
x-20t=0
Consider the first equation. Subtract 20t from both sides.
x=30t-150
Consider the second equation. Use the distributive property to multiply 30 by t-5.
x-30t=-150
Subtract 30t from both sides.
x-20t=0,x-30t=-150
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x-20t+30t=150
Subtract x-30t=-150 from x-20t=0 by subtracting like terms on each side of the equal sign.
-20t+30t=150
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
10t=150
Add -20t to 30t.
t=15
Divide both sides by 10.
x-30\times 15=-150
Substitute 15 for t in x-30t=-150. Because the resulting equation contains only one variable, you can solve for x directly.
x-450=-150
Multiply -30 times 15.
x=300
Add 450 to both sides of the equation.
x=300,t=15
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}