Solve for x, y
x=240
y=24
Graph
Share
Copied to clipboard
x-10y=0
Consider the first equation. Subtract 10y from both sides.
x-15y=-120
Consider the second equation. Subtract 15y from both sides.
x-10y=0,x-15y=-120
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-10y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=10y
Add 10y to both sides of the equation.
10y-15y=-120
Substitute 10y for x in the other equation, x-15y=-120.
-5y=-120
Add 10y to -15y.
y=24
Divide both sides by -5.
x=10\times 24
Substitute 24 for y in x=10y. Because the resulting equation contains only one variable, you can solve for x directly.
x=240
Multiply 10 times 24.
x=240,y=24
The system is now solved.
x-10y=0
Consider the first equation. Subtract 10y from both sides.
x-15y=-120
Consider the second equation. Subtract 15y from both sides.
x-10y=0,x-15y=-120
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-10\\1&-15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-120\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-10\\1&-15\end{matrix}\right))\left(\begin{matrix}1&-10\\1&-15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-10\\1&-15\end{matrix}\right))\left(\begin{matrix}0\\-120\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-10\\1&-15\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-10\\1&-15\end{matrix}\right))\left(\begin{matrix}0\\-120\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-10\\1&-15\end{matrix}\right))\left(\begin{matrix}0\\-120\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{-15-\left(-10\right)}&-\frac{-10}{-15-\left(-10\right)}\\-\frac{1}{-15-\left(-10\right)}&\frac{1}{-15-\left(-10\right)}\end{matrix}\right)\left(\begin{matrix}0\\-120\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-2\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}0\\-120\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\left(-120\right)\\-\frac{1}{5}\left(-120\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}240\\24\end{matrix}\right)
Do the arithmetic.
x=240,y=24
Extract the matrix elements x and y.
x-10y=0
Consider the first equation. Subtract 10y from both sides.
x-15y=-120
Consider the second equation. Subtract 15y from both sides.
x-10y=0,x-15y=-120
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x-10y+15y=120
Subtract x-15y=-120 from x-10y=0 by subtracting like terms on each side of the equal sign.
-10y+15y=120
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
5y=120
Add -10y to 15y.
y=24
Divide both sides by 5.
x-15\times 24=-120
Substitute 24 for y in x-15y=-120. Because the resulting equation contains only one variable, you can solve for x directly.
x-360=-120
Multiply -15 times 24.
x=240
Add 360 to both sides of the equation.
x=240,y=24
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}