Solve for x, d_p
x=-1.183
d_{p}=\frac{1183}{2360}\approx 0.501271186
Graph
Share
Copied to clipboard
-1.183=-1.18\times 2d_{p}
Consider the second equation. Insert the known values of variables into the equation.
-1.183=-2.36d_{p}
Multiply -1.18 and 2 to get -2.36.
-2.36d_{p}=-1.183
Swap sides so that all variable terms are on the left hand side.
d_{p}=\frac{-1.183}{-2.36}
Divide both sides by -2.36.
d_{p}=\frac{-1183}{-2360}
Expand \frac{-1.183}{-2.36} by multiplying both numerator and the denominator by 1000.
d_{p}=\frac{1183}{2360}
Fraction \frac{-1183}{-2360} can be simplified to \frac{1183}{2360} by removing the negative sign from both the numerator and the denominator.
x=-1.183 d_{p}=\frac{1183}{2360}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}