Skip to main content
Solve for x, x_1, x_2
Tick mark Image

Similar Problems from Web Search

Share

x=\frac{2+\sqrt{4-4\times 8\left(-8\right)}}{2\times 6}
Consider the first equation. Calculate 2 to the power of 2 and get 4.
x=\frac{2+\sqrt{4-32\left(-8\right)}}{2\times 6}
Multiply 4 and 8 to get 32.
x=\frac{2+\sqrt{4-\left(-256\right)}}{2\times 6}
Multiply 32 and -8 to get -256.
x=\frac{2+\sqrt{4+256}}{2\times 6}
The opposite of -256 is 256.
x=\frac{2+\sqrt{260}}{2\times 6}
Add 4 and 256 to get 260.
x=\frac{2+2\sqrt{65}}{2\times 6}
Factor 260=2^{2}\times 65. Rewrite the square root of the product \sqrt{2^{2}\times 65} as the product of square roots \sqrt{2^{2}}\sqrt{65}. Take the square root of 2^{2}.
x=\frac{2+2\sqrt{65}}{12}
Multiply 2 and 6 to get 12.
x=\frac{1}{6}+\frac{1}{6}\sqrt{65}
Divide each term of 2+2\sqrt{65} by 12 to get \frac{1}{6}+\frac{1}{6}\sqrt{65}.
x_{2}=\frac{4}{3}
Consider the third equation. Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
x=\frac{1}{6}+\frac{1}{6}\sqrt{65} x_{1}=-1 x_{2}=\frac{4}{3}
The system is now solved.