Solve for x, x_1, x_2
x = \frac{\sqrt{65} + 1}{6} \approx 1.510376291
x_{1}=-1
x_{2} = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Share
Copied to clipboard
x=\frac{2+\sqrt{4-4\times 8\left(-8\right)}}{2\times 6}
Consider the first equation. Calculate 2 to the power of 2 and get 4.
x=\frac{2+\sqrt{4-32\left(-8\right)}}{2\times 6}
Multiply 4 and 8 to get 32.
x=\frac{2+\sqrt{4-\left(-256\right)}}{2\times 6}
Multiply 32 and -8 to get -256.
x=\frac{2+\sqrt{4+256}}{2\times 6}
The opposite of -256 is 256.
x=\frac{2+\sqrt{260}}{2\times 6}
Add 4 and 256 to get 260.
x=\frac{2+2\sqrt{65}}{2\times 6}
Factor 260=2^{2}\times 65. Rewrite the square root of the product \sqrt{2^{2}\times 65} as the product of square roots \sqrt{2^{2}}\sqrt{65}. Take the square root of 2^{2}.
x=\frac{2+2\sqrt{65}}{12}
Multiply 2 and 6 to get 12.
x=\frac{1}{6}+\frac{1}{6}\sqrt{65}
Divide each term of 2+2\sqrt{65} by 12 to get \frac{1}{6}+\frac{1}{6}\sqrt{65}.
x_{2}=\frac{4}{3}
Consider the third equation. Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
x=\frac{1}{6}+\frac{1}{6}\sqrt{65} x_{1}=-1 x_{2}=\frac{4}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}