Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x=2.3y
Consider the first equation. Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
2.3y+y=100
Substitute \frac{23y}{10} for x in the other equation, x+y=100.
3.3y=100
Add \frac{23y}{10} to y.
y=\frac{1000}{33}
Divide both sides of the equation by 3.3, which is the same as multiplying both sides by the reciprocal of the fraction.
x=2.3\times \frac{1000}{33}
Substitute \frac{1000}{33} for y in x=2.3y. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{2300}{33}
Multiply 2.3 times \frac{1000}{33} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{2300}{33},y=\frac{1000}{33}
The system is now solved.
x=2.3y
Consider the first equation. Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
x-2.3y=0
Subtract 2.3y from both sides.
x-2.3y=0,x+y=100
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-2.3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\100\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-2.3\\1&1\end{matrix}\right))\left(\begin{matrix}1&-2.3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2.3\\1&1\end{matrix}\right))\left(\begin{matrix}0\\100\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-2.3\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2.3\\1&1\end{matrix}\right))\left(\begin{matrix}0\\100\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2.3\\1&1\end{matrix}\right))\left(\begin{matrix}0\\100\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2.3\right)}&-\frac{-2.3}{1-\left(-2.3\right)}\\-\frac{1}{1-\left(-2.3\right)}&\frac{1}{1-\left(-2.3\right)}\end{matrix}\right)\left(\begin{matrix}0\\100\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{33}&\frac{23}{33}\\-\frac{10}{33}&\frac{10}{33}\end{matrix}\right)\left(\begin{matrix}0\\100\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{23}{33}\times 100\\\frac{10}{33}\times 100\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2300}{33}\\\frac{1000}{33}\end{matrix}\right)
Do the arithmetic.
x=\frac{2300}{33},y=\frac{1000}{33}
Extract the matrix elements x and y.
x=2.3y
Consider the first equation. Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
x-2.3y=0
Subtract 2.3y from both sides.
x-2.3y=0,x+y=100
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x-2.3y-y=-100
Subtract x+y=100 from x-2.3y=0 by subtracting like terms on each side of the equal sign.
-2.3y-y=-100
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
-3.3y=-100
Add -\frac{23y}{10} to -y.
y=\frac{1000}{33}
Divide both sides of the equation by -3.3, which is the same as multiplying both sides by the reciprocal of the fraction.
x+\frac{1000}{33}=100
Substitute \frac{1000}{33} for y in x+y=100. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{2300}{33}
Subtract \frac{1000}{33} from both sides of the equation.
x=\frac{2300}{33},y=\frac{1000}{33}
The system is now solved.