Solve for x, y, z
x = \frac{46}{7} = 6\frac{4}{7} \approx 6.571428571
y=\frac{4}{7}\approx 0.571428571
z = \frac{15}{7} = 2\frac{1}{7} \approx 2.142857143
Share
Copied to clipboard
x=-y+z+5
Solve x+y-z=5 for x.
-y+z+5-3y+z=7 3\left(-y+z+5\right)+6y-8z=6
Substitute -y+z+5 for x in the second and third equation.
y=-\frac{1}{2}+\frac{1}{2}z z=\frac{9}{5}+\frac{3}{5}y
Solve these equations for y and z respectively.
z=\frac{9}{5}+\frac{3}{5}\left(-\frac{1}{2}+\frac{1}{2}z\right)
Substitute -\frac{1}{2}+\frac{1}{2}z for y in the equation z=\frac{9}{5}+\frac{3}{5}y.
z=\frac{15}{7}
Solve z=\frac{9}{5}+\frac{3}{5}\left(-\frac{1}{2}+\frac{1}{2}z\right) for z.
y=-\frac{1}{2}+\frac{1}{2}\times \frac{15}{7}
Substitute \frac{15}{7} for z in the equation y=-\frac{1}{2}+\frac{1}{2}z.
y=\frac{4}{7}
Calculate y from y=-\frac{1}{2}+\frac{1}{2}\times \frac{15}{7}.
x=-\frac{4}{7}+\frac{15}{7}+5
Substitute \frac{4}{7} for y and \frac{15}{7} for z in the equation x=-y+z+5.
x=\frac{46}{7}
Calculate x from x=-\frac{4}{7}+\frac{15}{7}+5.
x=\frac{46}{7} y=\frac{4}{7} z=\frac{15}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}