Solve for x, y, z
x = \frac{15}{4} = 3\frac{3}{4} = 3.75
y = \frac{39}{4} = 9\frac{3}{4} = 9.75
z = \frac{21}{2} = 10\frac{1}{2} = 10.5
Share
Copied to clipboard
x=-y+z+3
Solve x+y-z=3 for x.
-y+z+3-y+2z=15 6\left(-y+z+3\right)-2y=3
Substitute -y+z+3 for x in the second and third equation.
y=-6+\frac{3}{2}z z=-\frac{5}{2}+\frac{4}{3}y
Solve these equations for y and z respectively.
z=-\frac{5}{2}+\frac{4}{3}\left(-6+\frac{3}{2}z\right)
Substitute -6+\frac{3}{2}z for y in the equation z=-\frac{5}{2}+\frac{4}{3}y.
z=\frac{21}{2}
Solve z=-\frac{5}{2}+\frac{4}{3}\left(-6+\frac{3}{2}z\right) for z.
y=-6+\frac{3}{2}\times \frac{21}{2}
Substitute \frac{21}{2} for z in the equation y=-6+\frac{3}{2}z.
y=\frac{39}{4}
Calculate y from y=-6+\frac{3}{2}\times \frac{21}{2}.
x=-\frac{39}{4}+\frac{21}{2}+3
Substitute \frac{39}{4} for y and \frac{21}{2} for z in the equation x=-y+z+3.
x=\frac{15}{4}
Calculate x from x=-\frac{39}{4}+\frac{21}{2}+3.
x=\frac{15}{4} y=\frac{39}{4} z=\frac{21}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}