Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=a,y^{2}+x^{2}=a^{2}
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=a
Solve x+y=a for x by isolating x on the left hand side of the equal sign.
x=-y+a
Subtract y from both sides of the equation.
y^{2}+\left(-y+a\right)^{2}=a^{2}
Substitute -y+a for x in the other equation, y^{2}+x^{2}=a^{2}.
y^{2}+y^{2}+\left(-2a\right)y+a^{2}=a^{2}
Square -y+a.
2y^{2}+\left(-2a\right)y+a^{2}=a^{2}
Add y^{2} to y^{2}.
2y^{2}+\left(-2a\right)y+a^{2}-a^{2}=0
Subtract a^{2} from both sides of the equation.
y=\frac{-\left(-2a\right)±\sqrt{\left(-2a\right)^{2}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\left(-1\right)\times 2a for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-2a\right)±2|a|}{2\times 2}
The square root of b^{2} is |b|. Substitute 1\left(-1\right)\times 2a for b.
y=\frac{2a±2|a|}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{2|a|+2a}{4}
Now solve the equation y=\frac{2a±2|a|}{4} when ± is plus. Add 2a to 2|a|.
y=\frac{|a|+a}{2}
Divide 2a+2|a| by 4.
y=\frac{-2|a|+2a}{4}
Now solve the equation y=\frac{2a±2|a|}{4} when ± is minus. Subtract 2|a| from 2a.
y=\frac{a-|a|}{2}
Divide 2a-2|a| by 4.
x=-\frac{|a|+a}{2}+a
There are two solutions for y: \frac{a+|a|}{2} and \frac{a-|a|}{2}. Substitute \frac{a+|a|}{2} for y in the equation x=-y+a to find the corresponding solution for x that satisfies both equations.
x=-\frac{a-|a|}{2}+a
Now substitute \frac{a-|a|}{2} for y in the equation x=-y+a and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{|a|+a}{2}+a,y=\frac{|a|+a}{2}\text{ or }x=-\frac{a-|a|}{2}+a,y=\frac{a-|a|}{2}
The system is now solved.