Solve for x, y
x=0\text{, }y=8
x=8\text{, }y=0
Graph
Share
Copied to clipboard
x+y=8,y^{2}+x^{2}=64
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=8
Solve x+y=8 for x by isolating x on the left hand side of the equal sign.
x=-y+8
Subtract y from both sides of the equation.
y^{2}+\left(-y+8\right)^{2}=64
Substitute -y+8 for x in the other equation, y^{2}+x^{2}=64.
y^{2}+y^{2}-16y+64=64
Square -y+8.
2y^{2}-16y+64=64
Add y^{2} to y^{2}.
2y^{2}-16y=0
Subtract 64 from both sides of the equation.
y=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 8\left(-1\right)\times 2 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-16\right)±16}{2\times 2}
Take the square root of \left(-16\right)^{2}.
y=\frac{16±16}{2\times 2}
The opposite of 1\times 8\left(-1\right)\times 2 is 16.
y=\frac{16±16}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{32}{4}
Now solve the equation y=\frac{16±16}{4} when ± is plus. Add 16 to 16.
y=8
Divide 32 by 4.
y=\frac{0}{4}
Now solve the equation y=\frac{16±16}{4} when ± is minus. Subtract 16 from 16.
y=0
Divide 0 by 4.
x=-8+8
There are two solutions for y: 8 and 0. Substitute 8 for y in the equation x=-y+8 to find the corresponding solution for x that satisfies both equations.
x=0
Add -8 to 8.
x=8
Now substitute 0 for y in the equation x=-y+8 and solve to find the corresponding solution for x that satisfies both equations.
x=0,y=8\text{ or }x=8,y=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}