Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=780,x-y=975
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=780
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+780
Subtract y from both sides of the equation.
-y+780-y=975
Substitute -y+780 for x in the other equation, x-y=975.
-2y+780=975
Add -y to -y.
-2y=195
Subtract 780 from both sides of the equation.
y=-\frac{195}{2}
Divide both sides by -2.
x=-\left(-\frac{195}{2}\right)+780
Substitute -\frac{195}{2} for y in x=-y+780. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{195}{2}+780
Multiply -1 times -\frac{195}{2}.
x=\frac{1755}{2}
Add 780 to \frac{195}{2}.
x=\frac{1755}{2},y=-\frac{195}{2}
The system is now solved.
x+y=780,x-y=975
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}780\\975\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}780\\975\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}780\\975\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}780\\975\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}780\\975\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}780\\975\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 780+\frac{1}{2}\times 975\\\frac{1}{2}\times 780-\frac{1}{2}\times 975\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1755}{2}\\-\frac{195}{2}\end{matrix}\right)
Do the arithmetic.
x=\frac{1755}{2},y=-\frac{195}{2}
Extract the matrix elements x and y.
x+y=780,x-y=975
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x+y+y=780-975
Subtract x-y=975 from x+y=780 by subtracting like terms on each side of the equal sign.
y+y=780-975
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
2y=780-975
Add y to y.
2y=-195
Add 780 to -975.
y=-\frac{195}{2}
Divide both sides by 2.
x-\left(-\frac{195}{2}\right)=975
Substitute -\frac{195}{2} for y in x-y=975. Because the resulting equation contains only one variable, you can solve for x directly.
x+\frac{195}{2}=975
Multiply -1 times -\frac{195}{2}.
x=\frac{1755}{2}
Subtract \frac{195}{2} from both sides of the equation.
x=\frac{1755}{2},y=-\frac{195}{2}
The system is now solved.