Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=77,x+2y=274
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=77
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+77
Subtract y from both sides of the equation.
-y+77+2y=274
Substitute -y+77 for x in the other equation, x+2y=274.
y+77=274
Add -y to 2y.
y=197
Subtract 77 from both sides of the equation.
x=-197+77
Substitute 197 for y in x=-y+77. Because the resulting equation contains only one variable, you can solve for x directly.
x=-120
Add 77 to -197.
x=-120,y=197
The system is now solved.
x+y=77,x+2y=274
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}77\\274\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}1&1\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}77\\274\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}77\\274\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}77\\274\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-1}&-\frac{1}{2-1}\\-\frac{1}{2-1}&\frac{1}{2-1}\end{matrix}\right)\left(\begin{matrix}77\\274\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right)\left(\begin{matrix}77\\274\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 77-274\\-77+274\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-120\\197\end{matrix}\right)
Do the arithmetic.
x=-120,y=197
Extract the matrix elements x and y.
x+y=77,x+2y=274
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x+y-2y=77-274
Subtract x+2y=274 from x+y=77 by subtracting like terms on each side of the equal sign.
y-2y=77-274
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
-y=77-274
Add y to -2y.
-y=-197
Add 77 to -274.
y=197
Divide both sides by -1.
x+2\times 197=274
Substitute 197 for y in x+2y=274. Because the resulting equation contains only one variable, you can solve for x directly.
x+394=274
Multiply 2 times 197.
x=-120
Subtract 394 from both sides of the equation.
x=-120,y=197
The system is now solved.