Solve for x, y
x=40
y=35
Graph
Share
Copied to clipboard
x+y=75,25x+30y=2050
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=75
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+75
Subtract y from both sides of the equation.
25\left(-y+75\right)+30y=2050
Substitute -y+75 for x in the other equation, 25x+30y=2050.
-25y+1875+30y=2050
Multiply 25 times -y+75.
5y+1875=2050
Add -25y to 30y.
5y=175
Subtract 1875 from both sides of the equation.
y=35
Divide both sides by 5.
x=-35+75
Substitute 35 for y in x=-y+75. Because the resulting equation contains only one variable, you can solve for x directly.
x=40
Add 75 to -35.
x=40,y=35
The system is now solved.
x+y=75,25x+30y=2050
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\25&30\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}75\\2050\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\25&30\end{matrix}\right))\left(\begin{matrix}1&1\\25&30\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&30\end{matrix}\right))\left(\begin{matrix}75\\2050\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\25&30\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&30\end{matrix}\right))\left(\begin{matrix}75\\2050\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&30\end{matrix}\right))\left(\begin{matrix}75\\2050\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{30}{30-25}&-\frac{1}{30-25}\\-\frac{25}{30-25}&\frac{1}{30-25}\end{matrix}\right)\left(\begin{matrix}75\\2050\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6&-\frac{1}{5}\\-5&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}75\\2050\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\times 75-\frac{1}{5}\times 2050\\-5\times 75+\frac{1}{5}\times 2050\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\35\end{matrix}\right)
Do the arithmetic.
x=40,y=35
Extract the matrix elements x and y.
x+y=75,25x+30y=2050
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
25x+25y=25\times 75,25x+30y=2050
To make x and 25x equal, multiply all terms on each side of the first equation by 25 and all terms on each side of the second by 1.
25x+25y=1875,25x+30y=2050
Simplify.
25x-25x+25y-30y=1875-2050
Subtract 25x+30y=2050 from 25x+25y=1875 by subtracting like terms on each side of the equal sign.
25y-30y=1875-2050
Add 25x to -25x. Terms 25x and -25x cancel out, leaving an equation with only one variable that can be solved.
-5y=1875-2050
Add 25y to -30y.
-5y=-175
Add 1875 to -2050.
y=35
Divide both sides by -5.
25x+30\times 35=2050
Substitute 35 for y in 25x+30y=2050. Because the resulting equation contains only one variable, you can solve for x directly.
25x+1050=2050
Multiply 30 times 35.
25x=1000
Subtract 1050 from both sides of the equation.
x=40
Divide both sides by 25.
x=40,y=35
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}