Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=70,70x+50y=4400
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=70
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+70
Subtract y from both sides of the equation.
70\left(-y+70\right)+50y=4400
Substitute -y+70 for x in the other equation, 70x+50y=4400.
-70y+4900+50y=4400
Multiply 70 times -y+70.
-20y+4900=4400
Add -70y to 50y.
-20y=-500
Subtract 4900 from both sides of the equation.
y=25
Divide both sides by -20.
x=-25+70
Substitute 25 for y in x=-y+70. Because the resulting equation contains only one variable, you can solve for x directly.
x=45
Add 70 to -25.
x=45,y=25
The system is now solved.
x+y=70,70x+50y=4400
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\70&50\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}70\\4400\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\70&50\end{matrix}\right))\left(\begin{matrix}1&1\\70&50\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\70&50\end{matrix}\right))\left(\begin{matrix}70\\4400\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\70&50\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\70&50\end{matrix}\right))\left(\begin{matrix}70\\4400\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\70&50\end{matrix}\right))\left(\begin{matrix}70\\4400\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{50}{50-70}&-\frac{1}{50-70}\\-\frac{70}{50-70}&\frac{1}{50-70}\end{matrix}\right)\left(\begin{matrix}70\\4400\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}&\frac{1}{20}\\\frac{7}{2}&-\frac{1}{20}\end{matrix}\right)\left(\begin{matrix}70\\4400\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}\times 70+\frac{1}{20}\times 4400\\\frac{7}{2}\times 70-\frac{1}{20}\times 4400\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}45\\25\end{matrix}\right)
Do the arithmetic.
x=45,y=25
Extract the matrix elements x and y.
x+y=70,70x+50y=4400
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
70x+70y=70\times 70,70x+50y=4400
To make x and 70x equal, multiply all terms on each side of the first equation by 70 and all terms on each side of the second by 1.
70x+70y=4900,70x+50y=4400
Simplify.
70x-70x+70y-50y=4900-4400
Subtract 70x+50y=4400 from 70x+70y=4900 by subtracting like terms on each side of the equal sign.
70y-50y=4900-4400
Add 70x to -70x. Terms 70x and -70x cancel out, leaving an equation with only one variable that can be solved.
20y=4900-4400
Add 70y to -50y.
20y=500
Add 4900 to -4400.
y=25
Divide both sides by 20.
70x+50\times 25=4400
Substitute 25 for y in 70x+50y=4400. Because the resulting equation contains only one variable, you can solve for x directly.
70x+1250=4400
Multiply 50 times 25.
70x=3150
Subtract 1250 from both sides of the equation.
x=45
Divide both sides by 70.
x=45,y=25
The system is now solved.