Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=65,5x+35y=1575
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=65
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+65
Subtract y from both sides of the equation.
5\left(-y+65\right)+35y=1575
Substitute -y+65 for x in the other equation, 5x+35y=1575.
-5y+325+35y=1575
Multiply 5 times -y+65.
30y+325=1575
Add -5y to 35y.
30y=1250
Subtract 325 from both sides of the equation.
y=\frac{125}{3}
Divide both sides by 30.
x=-\frac{125}{3}+65
Substitute \frac{125}{3} for y in x=-y+65. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{70}{3}
Add 65 to -\frac{125}{3}.
x=\frac{70}{3},y=\frac{125}{3}
The system is now solved.
x+y=65,5x+35y=1575
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\5&35\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}65\\1575\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\5&35\end{matrix}\right))\left(\begin{matrix}1&1\\5&35\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&35\end{matrix}\right))\left(\begin{matrix}65\\1575\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\5&35\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&35\end{matrix}\right))\left(\begin{matrix}65\\1575\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&35\end{matrix}\right))\left(\begin{matrix}65\\1575\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{35}{35-5}&-\frac{1}{35-5}\\-\frac{5}{35-5}&\frac{1}{35-5}\end{matrix}\right)\left(\begin{matrix}65\\1575\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{6}&-\frac{1}{30}\\-\frac{1}{6}&\frac{1}{30}\end{matrix}\right)\left(\begin{matrix}65\\1575\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{6}\times 65-\frac{1}{30}\times 1575\\-\frac{1}{6}\times 65+\frac{1}{30}\times 1575\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{70}{3}\\\frac{125}{3}\end{matrix}\right)
Do the arithmetic.
x=\frac{70}{3},y=\frac{125}{3}
Extract the matrix elements x and y.
x+y=65,5x+35y=1575
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5x+5y=5\times 65,5x+35y=1575
To make x and 5x equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by 1.
5x+5y=325,5x+35y=1575
Simplify.
5x-5x+5y-35y=325-1575
Subtract 5x+35y=1575 from 5x+5y=325 by subtracting like terms on each side of the equal sign.
5y-35y=325-1575
Add 5x to -5x. Terms 5x and -5x cancel out, leaving an equation with only one variable that can be solved.
-30y=325-1575
Add 5y to -35y.
-30y=-1250
Add 325 to -1575.
y=\frac{125}{3}
Divide both sides by -30.
5x+35\times \frac{125}{3}=1575
Substitute \frac{125}{3} for y in 5x+35y=1575. Because the resulting equation contains only one variable, you can solve for x directly.
5x+\frac{4375}{3}=1575
Multiply 35 times \frac{125}{3}.
5x=\frac{350}{3}
Subtract \frac{4375}{3} from both sides of the equation.
x=\frac{70}{3}
Divide both sides by 5.
x=\frac{70}{3},y=\frac{125}{3}
The system is now solved.