Solve for x, y
x=300
y=200
Graph
Share
Copied to clipboard
x+y=500,25x+35y=14500
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=500
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+500
Subtract y from both sides of the equation.
25\left(-y+500\right)+35y=14500
Substitute -y+500 for x in the other equation, 25x+35y=14500.
-25y+12500+35y=14500
Multiply 25 times -y+500.
10y+12500=14500
Add -25y to 35y.
10y=2000
Subtract 12500 from both sides of the equation.
y=200
Divide both sides by 10.
x=-200+500
Substitute 200 for y in x=-y+500. Because the resulting equation contains only one variable, you can solve for x directly.
x=300
Add 500 to -200.
x=300,y=200
The system is now solved.
x+y=500,25x+35y=14500
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\25&35\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}500\\14500\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\25&35\end{matrix}\right))\left(\begin{matrix}1&1\\25&35\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&35\end{matrix}\right))\left(\begin{matrix}500\\14500\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\25&35\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&35\end{matrix}\right))\left(\begin{matrix}500\\14500\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&35\end{matrix}\right))\left(\begin{matrix}500\\14500\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{35}{35-25}&-\frac{1}{35-25}\\-\frac{25}{35-25}&\frac{1}{35-25}\end{matrix}\right)\left(\begin{matrix}500\\14500\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}&-\frac{1}{10}\\-\frac{5}{2}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}500\\14500\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}\times 500-\frac{1}{10}\times 14500\\-\frac{5}{2}\times 500+\frac{1}{10}\times 14500\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}300\\200\end{matrix}\right)
Do the arithmetic.
x=300,y=200
Extract the matrix elements x and y.
x+y=500,25x+35y=14500
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
25x+25y=25\times 500,25x+35y=14500
To make x and 25x equal, multiply all terms on each side of the first equation by 25 and all terms on each side of the second by 1.
25x+25y=12500,25x+35y=14500
Simplify.
25x-25x+25y-35y=12500-14500
Subtract 25x+35y=14500 from 25x+25y=12500 by subtracting like terms on each side of the equal sign.
25y-35y=12500-14500
Add 25x to -25x. Terms 25x and -25x cancel out, leaving an equation with only one variable that can be solved.
-10y=12500-14500
Add 25y to -35y.
-10y=-2000
Add 12500 to -14500.
y=200
Divide both sides by -10.
25x+35\times 200=14500
Substitute 200 for y in 25x+35y=14500. Because the resulting equation contains only one variable, you can solve for x directly.
25x+7000=14500
Multiply 35 times 200.
25x=7500
Subtract 7000 from both sides of the equation.
x=300
Divide both sides by 25.
x=300,y=200
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}