Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=500,25x+35y=1450
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=500
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+500
Subtract y from both sides of the equation.
25\left(-y+500\right)+35y=1450
Substitute -y+500 for x in the other equation, 25x+35y=1450.
-25y+12500+35y=1450
Multiply 25 times -y+500.
10y+12500=1450
Add -25y to 35y.
10y=-11050
Subtract 12500 from both sides of the equation.
y=-1105
Divide both sides by 10.
x=-\left(-1105\right)+500
Substitute -1105 for y in x=-y+500. Because the resulting equation contains only one variable, you can solve for x directly.
x=1105+500
Multiply -1 times -1105.
x=1605
Add 500 to 1105.
x=1605,y=-1105
The system is now solved.
x+y=500,25x+35y=1450
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\25&35\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}500\\1450\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\25&35\end{matrix}\right))\left(\begin{matrix}1&1\\25&35\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&35\end{matrix}\right))\left(\begin{matrix}500\\1450\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\25&35\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&35\end{matrix}\right))\left(\begin{matrix}500\\1450\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&35\end{matrix}\right))\left(\begin{matrix}500\\1450\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{35}{35-25}&-\frac{1}{35-25}\\-\frac{25}{35-25}&\frac{1}{35-25}\end{matrix}\right)\left(\begin{matrix}500\\1450\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}&-\frac{1}{10}\\-\frac{5}{2}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}500\\1450\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}\times 500-\frac{1}{10}\times 1450\\-\frac{5}{2}\times 500+\frac{1}{10}\times 1450\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1605\\-1105\end{matrix}\right)
Do the arithmetic.
x=1605,y=-1105
Extract the matrix elements x and y.
x+y=500,25x+35y=1450
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
25x+25y=25\times 500,25x+35y=1450
To make x and 25x equal, multiply all terms on each side of the first equation by 25 and all terms on each side of the second by 1.
25x+25y=12500,25x+35y=1450
Simplify.
25x-25x+25y-35y=12500-1450
Subtract 25x+35y=1450 from 25x+25y=12500 by subtracting like terms on each side of the equal sign.
25y-35y=12500-1450
Add 25x to -25x. Terms 25x and -25x cancel out, leaving an equation with only one variable that can be solved.
-10y=12500-1450
Add 25y to -35y.
-10y=11050
Add 12500 to -1450.
y=-1105
Divide both sides by -10.
25x+35\left(-1105\right)=1450
Substitute -1105 for y in 25x+35y=1450. Because the resulting equation contains only one variable, you can solve for x directly.
25x-38675=1450
Multiply 35 times -1105.
25x=40125
Add 38675 to both sides of the equation.
x=1605
Divide both sides by 25.
x=1605,y=-1105
The system is now solved.