Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=45,40x+30y=1600
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=45
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+45
Subtract y from both sides of the equation.
40\left(-y+45\right)+30y=1600
Substitute -y+45 for x in the other equation, 40x+30y=1600.
-40y+1800+30y=1600
Multiply 40 times -y+45.
-10y+1800=1600
Add -40y to 30y.
-10y=-200
Subtract 1800 from both sides of the equation.
y=20
Divide both sides by -10.
x=-20+45
Substitute 20 for y in x=-y+45. Because the resulting equation contains only one variable, you can solve for x directly.
x=25
Add 45 to -20.
x=25,y=20
The system is now solved.
x+y=45,40x+30y=1600
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\40&30\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}45\\1600\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\40&30\end{matrix}\right))\left(\begin{matrix}1&1\\40&30\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\40&30\end{matrix}\right))\left(\begin{matrix}45\\1600\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\40&30\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\40&30\end{matrix}\right))\left(\begin{matrix}45\\1600\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\40&30\end{matrix}\right))\left(\begin{matrix}45\\1600\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{30}{30-40}&-\frac{1}{30-40}\\-\frac{40}{30-40}&\frac{1}{30-40}\end{matrix}\right)\left(\begin{matrix}45\\1600\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&\frac{1}{10}\\4&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}45\\1600\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 45+\frac{1}{10}\times 1600\\4\times 45-\frac{1}{10}\times 1600\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\20\end{matrix}\right)
Do the arithmetic.
x=25,y=20
Extract the matrix elements x and y.
x+y=45,40x+30y=1600
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
40x+40y=40\times 45,40x+30y=1600
To make x and 40x equal, multiply all terms on each side of the first equation by 40 and all terms on each side of the second by 1.
40x+40y=1800,40x+30y=1600
Simplify.
40x-40x+40y-30y=1800-1600
Subtract 40x+30y=1600 from 40x+40y=1800 by subtracting like terms on each side of the equal sign.
40y-30y=1800-1600
Add 40x to -40x. Terms 40x and -40x cancel out, leaving an equation with only one variable that can be solved.
10y=1800-1600
Add 40y to -30y.
10y=200
Add 1800 to -1600.
y=20
Divide both sides by 10.
40x+30\times 20=1600
Substitute 20 for y in 40x+30y=1600. Because the resulting equation contains only one variable, you can solve for x directly.
40x+600=1600
Multiply 30 times 20.
40x=1000
Subtract 600 from both sides of the equation.
x=25
Divide both sides by 40.
x=25,y=20
The system is now solved.