Solve for x, y
x=\frac{536500}{150a-1}
y=-\frac{500\left(1157-12600a\right)}{150a-1}
a\neq \frac{1}{150}
Graph
Share
Copied to clipboard
x+y=42000,12ax+0.08y=46280
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=42000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+42000
Subtract y from both sides of the equation.
12a\left(-y+42000\right)+0.08y=46280
Substitute -y+42000 for x in the other equation, 12ax+0.08y=46280.
\left(-12a\right)y+504000a+0.08y=46280
Multiply 12a times -y+42000.
\left(0.08-12a\right)y+504000a=46280
Add -12ay to \frac{2y}{25}.
\left(0.08-12a\right)y=46280-504000a
Subtract 504000a from both sides of the equation.
y=\frac{40\left(1157-12600a\right)}{0.08-12a}
Divide both sides by -12a+0.08.
x=-\frac{40\left(1157-12600a\right)}{0.08-12a}+42000
Substitute \frac{40\left(1157-12600a\right)}{-12a+0.08} for y in x=-y+42000. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{42920}{0.08-12a}
Add 42000 to -\frac{40\left(1157-12600a\right)}{-12a+0.08}.
x=-\frac{42920}{0.08-12a},y=\frac{40\left(1157-12600a\right)}{0.08-12a}
The system is now solved.
x+y=42000,12ax+0.08y=46280
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\12a&0.08\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}42000\\46280\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\12a&0.08\end{matrix}\right))\left(\begin{matrix}1&1\\12a&0.08\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12a&0.08\end{matrix}\right))\left(\begin{matrix}42000\\46280\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\12a&0.08\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12a&0.08\end{matrix}\right))\left(\begin{matrix}42000\\46280\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12a&0.08\end{matrix}\right))\left(\begin{matrix}42000\\46280\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.08}{0.08-12a}&-\frac{1}{0.08-12a}\\-\frac{12a}{0.08-12a}&\frac{1}{0.08-12a}\end{matrix}\right)\left(\begin{matrix}42000\\46280\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{25\left(0.08-12a\right)}&-\frac{1}{0.08-12a}\\-\frac{12a}{0.08-12a}&\frac{1}{0.08-12a}\end{matrix}\right)\left(\begin{matrix}42000\\46280\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{25\left(0.08-12a\right)}\times 42000+\left(-\frac{1}{0.08-12a}\right)\times 46280\\\left(-\frac{12a}{0.08-12a}\right)\times 42000+\frac{1}{0.08-12a}\times 46280\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{42920}{0.08-12a}\\\frac{480\left(12600a-1157\right)}{144a-0.96}\end{matrix}\right)
Do the arithmetic.
x=-\frac{42920}{0.08-12a},y=\frac{480\left(12600a-1157\right)}{144a-0.96}
Extract the matrix elements x and y.
x+y=42000,12ax+0.08y=46280
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
12ax+12ay=12a\times 42000,12ax+0.08y=46280
To make x and 12ax equal, multiply all terms on each side of the first equation by 12a and all terms on each side of the second by 1.
12ax+12ay=504000a,12ax+0.08y=46280
Simplify.
12ax+\left(-12a\right)x+12ay-0.08y=504000a-46280
Subtract 12ax+0.08y=46280 from 12ax+12ay=504000a by subtracting like terms on each side of the equal sign.
12ay-0.08y=504000a-46280
Add 12ax to -12ax. Terms 12ax and -12ax cancel out, leaving an equation with only one variable that can be solved.
\left(12a-0.08\right)y=504000a-46280
Add 12ay to -\frac{2y}{25}.
y=\frac{40\left(12600a-1157\right)}{12a-0.08}
Divide both sides by 12a-0.08.
12ax+0.08\times \frac{40\left(12600a-1157\right)}{12a-0.08}=46280
Substitute \frac{40\left(12600a-1157\right)}{12a-0.08} for y in 12ax+0.08y=46280. Because the resulting equation contains only one variable, you can solve for x directly.
12ax+\frac{16\left(12600a-1157\right)}{5\left(12a-0.08\right)}=46280
Multiply 0.08 times \frac{40\left(12600a-1157\right)}{12a-0.08}.
12ax=\frac{515040a}{12a-0.08}
Subtract \frac{16\left(12600a-1157\right)}{5\left(12a-0.08\right)} from both sides of the equation.
x=\frac{42920}{12a-0.08}
Divide both sides by 12a.
x=\frac{42920}{12a-0.08},y=\frac{40\left(12600a-1157\right)}{12a-0.08}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}