Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=42000,12x+fy=4628000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=42000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+42000
Subtract y from both sides of the equation.
12\left(-y+42000\right)+fy=4628000
Substitute -y+42000 for x in the other equation, 12x+fy=4628000.
-12y+504000+fy=4628000
Multiply 12 times -y+42000.
\left(f-12\right)y+504000=4628000
Add -12y to fy.
\left(f-12\right)y=4124000
Subtract 504000 from both sides of the equation.
y=\frac{4124000}{f-12}
Divide both sides by -12+f.
x=-\frac{4124000}{f-12}+42000
Substitute \frac{4124000}{-12+f} for y in x=-y+42000. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{2000\left(21f-2314\right)}{f-12}
Add 42000 to -\frac{4124000}{-12+f}.
x=\frac{2000\left(21f-2314\right)}{f-12},y=\frac{4124000}{f-12}
The system is now solved.
x+y=42000,12x+fy=4628000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\12&f\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}42000\\4628000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\12&f\end{matrix}\right))\left(\begin{matrix}1&1\\12&f\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12&f\end{matrix}\right))\left(\begin{matrix}42000\\4628000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\12&f\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12&f\end{matrix}\right))\left(\begin{matrix}42000\\4628000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12&f\end{matrix}\right))\left(\begin{matrix}42000\\4628000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{f}{f-12}&-\frac{1}{f-12}\\-\frac{12}{f-12}&\frac{1}{f-12}\end{matrix}\right)\left(\begin{matrix}42000\\4628000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{f}{f-12}\times 42000+\left(-\frac{1}{f-12}\right)\times 4628000\\\left(-\frac{12}{f-12}\right)\times 42000+\frac{1}{f-12}\times 4628000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2000\left(21f-2314\right)}{f-12}\\\frac{4124000}{f-12}\end{matrix}\right)
Do the arithmetic.
x=\frac{2000\left(21f-2314\right)}{f-12},y=\frac{4124000}{f-12}
Extract the matrix elements x and y.
x+y=42000,12x+fy=4628000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
12x+12y=12\times 42000,12x+fy=4628000
To make x and 12x equal, multiply all terms on each side of the first equation by 12 and all terms on each side of the second by 1.
12x+12y=504000,12x+fy=4628000
Simplify.
12x-12x+12y+\left(-f\right)y=504000-4628000
Subtract 12x+fy=4628000 from 12x+12y=504000 by subtracting like terms on each side of the equal sign.
12y+\left(-f\right)y=504000-4628000
Add 12x to -12x. Terms 12x and -12x cancel out, leaving an equation with only one variable that can be solved.
\left(12-f\right)y=504000-4628000
Add 12y to -fy.
\left(12-f\right)y=-4124000
Add 504000 to -4628000.
y=-\frac{4124000}{12-f}
Divide both sides by 12-f.
12x+f\left(-\frac{4124000}{12-f}\right)=4628000
Substitute -\frac{4124000}{12-f} for y in 12x+fy=4628000. Because the resulting equation contains only one variable, you can solve for x directly.
12x-\frac{4124000f}{12-f}=4628000
Multiply f times -\frac{4124000}{12-f}.
12x=\frac{24000\left(2314-21f\right)}{12-f}
Add \frac{4124000f}{12-f} to both sides of the equation.
x=\frac{2000\left(2314-21f\right)}{12-f}
Divide both sides by 12.
x=\frac{2000\left(2314-21f\right)}{12-f},y=-\frac{4124000}{12-f}
The system is now solved.