Solve for x, y
x=1073000
y=-1031000
Graph
Share
Copied to clipboard
x+y=42000,0.12x+0.08y=46280
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=42000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+42000
Subtract y from both sides of the equation.
0.12\left(-y+42000\right)+0.08y=46280
Substitute -y+42000 for x in the other equation, 0.12x+0.08y=46280.
-0.12y+5040+0.08y=46280
Multiply 0.12 times -y+42000.
-0.04y+5040=46280
Add -\frac{3y}{25} to \frac{2y}{25}.
-0.04y=41240
Subtract 5040 from both sides of the equation.
y=-1031000
Multiply both sides by -25.
x=-\left(-1031000\right)+42000
Substitute -1031000 for y in x=-y+42000. Because the resulting equation contains only one variable, you can solve for x directly.
x=1031000+42000
Multiply -1 times -1031000.
x=1073000
Add 42000 to 1031000.
x=1073000,y=-1031000
The system is now solved.
x+y=42000,0.12x+0.08y=46280
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\0.12&0.08\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}42000\\46280\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\0.12&0.08\end{matrix}\right))\left(\begin{matrix}1&1\\0.12&0.08\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.12&0.08\end{matrix}\right))\left(\begin{matrix}42000\\46280\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\0.12&0.08\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.12&0.08\end{matrix}\right))\left(\begin{matrix}42000\\46280\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.12&0.08\end{matrix}\right))\left(\begin{matrix}42000\\46280\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.08}{0.08-0.12}&-\frac{1}{0.08-0.12}\\-\frac{0.12}{0.08-0.12}&\frac{1}{0.08-0.12}\end{matrix}\right)\left(\begin{matrix}42000\\46280\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&25\\3&-25\end{matrix}\right)\left(\begin{matrix}42000\\46280\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\times 42000+25\times 46280\\3\times 42000-25\times 46280\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1073000\\-1031000\end{matrix}\right)
Do the arithmetic.
x=1073000,y=-1031000
Extract the matrix elements x and y.
x+y=42000,0.12x+0.08y=46280
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.12x+0.12y=0.12\times 42000,0.12x+0.08y=46280
To make x and \frac{3x}{25} equal, multiply all terms on each side of the first equation by 0.12 and all terms on each side of the second by 1.
0.12x+0.12y=5040,0.12x+0.08y=46280
Simplify.
0.12x-0.12x+0.12y-0.08y=5040-46280
Subtract 0.12x+0.08y=46280 from 0.12x+0.12y=5040 by subtracting like terms on each side of the equal sign.
0.12y-0.08y=5040-46280
Add \frac{3x}{25} to -\frac{3x}{25}. Terms \frac{3x}{25} and -\frac{3x}{25} cancel out, leaving an equation with only one variable that can be solved.
0.04y=5040-46280
Add \frac{3y}{25} to -\frac{2y}{25}.
0.04y=-41240
Add 5040 to -46280.
y=-1031000
Multiply both sides by 25.
0.12x+0.08\left(-1031000\right)=46280
Substitute -1031000 for y in 0.12x+0.08y=46280. Because the resulting equation contains only one variable, you can solve for x directly.
0.12x-82480=46280
Multiply 0.08 times -1031000.
0.12x=128760
Add 82480 to both sides of the equation.
x=1073000
Divide both sides of the equation by 0.12, which is the same as multiplying both sides by the reciprocal of the fraction.
x=1073000,y=-1031000
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}